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1 Introduction and algebraic preliminaries

The broad aim of number theory is to solve Diophantine equations i.e. polynomial equa-
tions with integer or rational coe�cients for which we seek integer or rational solutions.
Possibly the most famous example of a Diophantine equation is Fermat's Last Theorem,
which was conjectured by Pierre de Fermat but not proven until 1995 by Andrew Wiles.
It states that for n ≥ 3 the equation xn + yn = zn has no solutions with xyz ̸= 0.

Wiles' full proof is quite advanced, but for the case of n being a special kind of prime,
called a regular prime, Ernst Kummer had already studied and proved it in the 19th
century. Much of his work would become foundational to what we now call algebraic
number theory.

For completeness, we de�ne some algebraic structures that will be vital in our foray into
algebraic number theory. However we assume familiarity with linear algebra.

De�nition 1 (Group). A group is a triple (G, ·, e), where G is a set, · : G×G → G is a
binary operation and e ∈ G is an element such that

1. For all a, b, c ∈ G, we have (a · b) · c = a · (b · c). (associativity)

2. For all a ∈ G, we have a · e = e · a = a. (identity)

3. For all a ∈ G, there exists a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse)

A group is said to be abelian if the commutative law holds: a · b = b · a.

De�nition 2 (Ring). A ring is a quintuple (R,+, ·, 0R, 1R) where 0R, 1R ∈ R, and +, · :
R×R → R are binary operations such that

1. (R,+, 0R) is an abelian group.

2. The operation · : R×R → R satis�es associativity, i.e. a · (b · c) = (a · b) · c,
and identity: 1R · a = a · 1R = a.

3. Multiplication distributes over addition, i.e.

a · (b+ c) = (a · b) + (a · c)
(a+ b) · c = (a · c) + (b · c).

A ring is said to be commutative if the commutative law holds: a · b = b · a.

A commutative ring with a · b = 0 =⇒ a = 0 or b = 0 is called an integral domain.

In number theory, two of our principal objects of study are the integers Z and the integers
modulo some positive integer Zm = {0, . . . ,m − 1}. These are commutative rings. As it
gets tedious to assume a ring to be commutative everytime, in number theory we just
assume all rings to be commutative by default - which we shall follow in this article as
well. Another important example is the ring R[X] of polynomials in X with coe�cients
in R.

The concept of ideal numbers as "missing factors" in a number ring was also developed
by Kummer originally, and later extended by Dedekind, Hilbert and �nally Noether to
its current de�nition which is as follows:
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De�nition 3 (Ideal). Let R be a ring. A subset I ⊆ R is an ideal if

1. It is an additive subgroup of (R,+, 0R), i.e. it is closed under addition and additive
inverses. (additive closure)

2. If a ∈ I and b ∈ R, then a · b ∈ I. (strong closure)

We say I is a proper ideal if I ̸= R.

De�nition 4 (Principal ideal). An ideal I of a ring R generated by a single element
a ∈ R is called a principal ideal, denoted

(a) = {ra : r ∈ R}.

An ring in which every ideal is principal is called a principal ideal domain (PID).

De�nition 5 (Group of units). An element u of a ring R is a unit if there is another
element v ∈ R such that u · v = 1R. The set of all units in a ring R forms a group, called
the group of units R× of R.

It is important that this depends on R, not just on u. For example, 2 ∈ Z is not a unit,
but 2 ∈ Q is a unit (since 1

2
is an inverse).

De�nition 6 (Field). A �eld F is a non-zero ring where every 0F ̸= u ∈ F is a unit.

Z is not a �eld but Q,R,C are all �elds.

De�nition 7 (Noetherian rings). A ring R is Noetherian if every ideal I in R is �nitely
generated i.e. there exist a1, . . . , an ∈ I such that I = Ra1 + · · ·+Ran.

De�nition 8 (Prime and maximal ideals). An ideal p is prime if p ̸= (1) and
if xy ∈ p =⇒ x ∈ p or y ∈ p.

An ideal m is maximal if m ̸= (1) and if there is no ideal a such that m ⊂ a ⊂ (1) (strict
inclusions).

When solving Diophantine equations we often encounter the problem that a equation with
integer coe�cients may not have rational (or even real) solutions. For example, consider
x2+1 = 0 or x2−2 = 0. In both cases we can adjoin the roots to Q to get the �elds

Q(i) = {a+ bi : a, b ∈ Q} and Q(
√
2) = {a+ b

√
2 : a, b ∈ Q}

respectively, both of which contain Q. Similarly Q(i,
√
2) contains the roots to both

equations, and contains both Q(i) and Q(
√
2).

Q(i,
√
2)

Q(i) Q(
√
2)

Q
x2+1=0 x2−2=0
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Such �elds constructed by adjoining (�nitely many) roots to Q are number �elds which
are examples of �nite �eld extensions.

De�nition 9 (Field extension). Let K be a �eld. A �eld L ⊇ K is called an extension of
K. Such a �eld extension is denoted L/K. In such a �eld extension, L is a K-vector space
with dimK(L) = [L : K] called the degree of the extension. A �nite extension is a �eld
extension of �nite degree.

In a �nite extension for α ∈ L we have the linear operator mα : L → L de�ned as ℓ 7→ αℓ.
We de�ne the norm and trace of α as

NL/K(α) = det(mα) and trL/K(α) = tr(mα).

De�nition 10 (Number �eld). A number �eld K is a �nite extension of Q.

De�nition 11 (Algebraic numbers). An element α ∈ L/K is algebraic over K if
∃0 ̸= f(X) ∈ K[X] such that f(α) = 0. Otherwise we say that α is transcendental over
K. It is easily shown that every element of a �nite extension is algebraic - in particular,
every element of a number �eld is algebraic and called an algebraic number.

De�nition 12 (Algebraic integer). Let K be a number �eld. Then α ∈ K is an algebraic
integer if there exists a monic polynomial f(X) ∈ Z[X] such that f(α) = 0. The set of
all algebraic integers of a number �eld K, denoted OK, forms a ring. We sometimes call
OK a number ring.
√
2 is an algebraic integer as it is a root of f(X) = X2 − 2. 1

2
is not an algebraic integer

as f(X) = 2X − 1 is not monic (leading coe�cient is 2 ̸= 1). So we think of algebraic
integers as not having denominators, just the same as in rational integers.

In rings of algebraic integers, elements that were prime as rational integers may not be
"prime" as algebraic integers. For example, in the Gaussian integers Z[i] we can write
5 = (2 + i)(2− i) so it is not "prime" in Z[i].

De�nition 13 (Irreducible, prime and assoicate elements). Let R be an integral domain
and let r ∈ R be nonzero and not a unit. For any a, b ∈ R

1. if r = ab =⇒ a or b is a unit in R then r is irreducible in R,

2. if r | ab =⇒ r | a or r | b then r is prime in R,

3. if there is a unit u ∈ R× such that a = ub then a and b are associates in R.

In an integral domain a prime element is always irreducible but not vice-versa. We think
of irreducibility as a generalisation of primality. Rings in which irreducible elements are
prime are called unique factorisation domains (UFDs).

De�nition 14 (Galois group and extension). Let L/K be a �eld extension and Aut(L/K)
be the set of automorphisms of L/K, i.e., bijections σ : L → L such that

σ(xy) = σ(x)σ(y), σ(x+ y) = σ(x) + σ(y), σ(1) = 1 and σ(0) = 0

with x ∈ K =⇒ σ(x) = x. Then the set Aut(L/K) with function compositon forms a
group. If L/K is algebraic and Aut(L/K) = K then the L/K is said to be a Galois exten-
sion and its group of automorphisms is called the Galois group Aut(L/K) = Gal(L/K).
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2 Ideal class group and Dedekind domains

To prove Fermat's Last Theorem (FLT) it is enough to prove it for all primes p ≥ 3. This
is because if FLT holds for some m ≥ 3 then it holds for all multiples km of m. So proving
FLT even for special kinds of primes was realised to be very important towards solving it.
Also we can assume gcd(x, y, z) = 1 since if they did have a common divisor d we could
divide both sides of the equation by d and then gcd(x/d, y/d, z/d) = 1.

We now consider some special number �elds. A generalisation of the Gaussian numbers
Q(i) could be the cyclotomic �elds

Q(ζn) =

{
n−1∑
k=0

akζ
k
n : ak ∈ Q

}

where ζn = e2iπ/n is an n-th root of unity (as ζnn = 1). ζn is a point on the unit circle in
the complex plane, hence the name cyclotomic �eld as it essentially divides the unit circle
into exactly n parts. The ring of integers of the cyclotomic number �eld is

OQ(ζn) =

{
n−1∑
k=0

akζ
k
n : ak ∈ Z

}
= Z[ζn].

The nth cyclotomic polynomial is denoted Φn =
∏

gcd(k,n)=1,1≤k≤n

(
x− ζkn

)
.

In the 19th century, there were attempts to solve FLT using cyclotomic number �elds.
Assuming gcd(x, y, z) = 1 with xyz ̸= 0, and p ≥ 3 prime, we have

xp + yp = zp =⇒ yp = zp − xp =

p−1∏
k=0

(z − ζkpx).

because zp − 1 =

p−1∏
k=0

(z − ζkp ).

Moreover,

zp − 1

z − 1
=

p−1∑
k=0

zk = (z − ζp)(z − ζ2p ) · · · (z − ζpp ). (1)

Conjecture 1 (Kummer). If p is an odd prime and if "unique factorisation" holds in
Z[ζp] then

xp + yp = zp has no solutions with xyz ̸= 0.

However, this line of attack fails as Kummer himself showed that unique factorisation
doesn't hold in Z[ζp]. In the rational integers Z, we have the fundamental theorem of
arithmetic, also known as the unique factorisation theorem:

Theorem 1 (Unique factorisation theorem). Every positive rational integer n can be
factorised uniquely as a product of primes

n = pa11 · · · pakk
in exactly one way upto rearrangement of the primes pi.
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In the ring Z[ζp], unique factorisation may not hold. The �rst prime for which it fails to
hold is p = 23; 2 is an irreducible element in Z[ζ] (setting ζ = ζ23)

2 ∤ (1 + ζ2 + ζ4 + ζ5 + ζ6 + ζ10 + ζ11) = a

2 ∤ (1 + ζ + ζ5 + ζ6 + ζ7 + ζ9 + ζ11) = b

but 2 | ab = 2ζ17 + 2ζ16 + 2ζ15 + 2ζ13 + 2ζ12 + 6ζ11 + 2ζ10 + 2ζ9 + 2ζ7 + 2ζ6 + 2ζ5.

To calculate the product ab above observe that in equation (1) ζ is a root so we get the
identity

1 + ζ + · · ·+ ζp−1 = 0.

For p = 23, the identity is
1 + ζ + · · ·+ ζ22 = 0.

So, we �rst brute force distribute and multiply, then reduce using our identity:

ab = 1 + ζ + ζ2 + ζ3 + ζ4 + 3ζ5 + 3ζ6 + 3ζ7 + ζ8 + 3ζ9 + 3ζ10 + 7ζ11 + 3ζ12 + 3ζ13 + ζ14

+3ζ15 + 3ζ16 + 3ζ17 + ζ18 ++ζ19 + ζ20 + ζ21 + ζ22

= 2ζ17 + 2ζ16 + 2ζ15 + 2ζ13 + 2ζ12 + 6ζ11 + 2ζ10 + 2ζ9 + 2ζ7 + 2ζ6 + 2ζ5.

As 2 divides this product but neither of the factors, it is not prime yet irreducible so
Z[ζ] can't be a UFD. This was in fact the example that Kummer gave in his original
paper.

To remedy this failure of unique factorisation in a number ring, Kummer came up with
the concept of "ideal number" - an algebraic integer which represents an ideal in the
ring of algebraic integers. They were meant to be the "missing factors" that would help
achieve unique factorisation in a number ring. Number rings are examples of Dedekind
domains - integral domains where unique factorisation of ideals holds.

De�nition 15 (Integral closure). Let R1, R2 be rings such that R2 ⊇ R1. Then α ∈ R2

is said to be integral over R1 if there exists a monic polynomial f(X) ∈ R1[X] such that
f(α) = 0. Integral closure of R1 in R2 is the set of all α ∈ R2 that are integral over R1.
R1 is integrally closed over R2 if it equals its integral closure in R2.

De�nition 16 (Dedekind domain). A Dedekind domain is an integral domain OK with
a �eld of fractions K such that

1. OK is Noetherian,

2. OK is integrally closed in K, and

3. every nonzero prime ideal in OK is maximal.

Every number ring is a Dedekind domain.

Theorem 2 (Unique factorisation holds in Dedekind domains). In a Dedekind domain
every nonzero proper ideal can be uniquely factorised as a product of nonzero prime ideals.

So just as in the ring of rational integers we have unique factorisation of positive integers
into a product of prime numbers, in a number ring we have unique factorisation of nonzero
proper ideals into a product of nonzero prime ideals.

5



The problem with unique factorisation of ideals in a number ring is that we may not get
principal ideal factors. Consider the simpler number ring Z[

√
−5]. It is not UFD as

6 = 2 · 3 = (1 +
√
5)(1−

√
5).

But if we consider the ideals we have

(2) = (2, 1 +
√
−5)(2, 1−

√
−5) = p1p2

(3) = (3, 1 +
√
−5)(3, 1−

√
−5) = p3p4

(1 +
√
−5) = (2, 1 +

√
−5)(3, 1 +

√
−5) = p1p3

(1−
√
−5) = (2, 1−

√
−5)(3, 1−

√
−5) = p2p4

where pi are prime ideals and thus the ideal factorisation

(6) = (2, 1 +
√
−5)(2, 1−

√
−5)(3, 1 +

√
−5)(3, 1−

√
−5) = p1p2p3p4

is unique. However note that none of the factors pi are principal which means Z[
√
−5] is

not PID. We want to measure the deviation of a number ring from being a PID. For that
we introduce the notion of an ideal class group.

De�nition 17 (Ideal class group). On the nonzero ideals in a number ring OK we de�ne
an equivalence relation as follows: nonzero ideals a and b inOK are in the same equivalence
class i� ∃α, β ∈ OK \ {0} : αa = βb. If we denote the class of a by c(a), then we have
c(a)c(b) = c(ab) which yields a well-de�ned multiplication operation on the set of these
ideal classes. The set of these ideal classes together with the aforementioned multiplication
operation form an abelian group called the ideal class group of K, denoted CK.

The ideal class group of a number �eld is �nite and the number of elements in it is called
the class number h(K) = |CK|.

3 Regular primes and Fermat's Last Theorem

Kummer used the class number to prove FLT for special primes which he de�ned as:

De�nition 18 (Regular prime). A prime p is regular if p ∤ hp = h(Q(ζp)).

For all primes p ≤ 19 hp = 1 so they are regular. Also h23 = 3 so p = 23 is regular. [1]
The signi�cance of a prime p being regular is that if ap is principal for an ideal a ⊆ Z[ζp]
then a is itself principal. This is because if ap is principal then it is trivial in CQ(ζp) and
as p ∤ hp we have a is trivial in the class group and so a principal ideal.

Lemma 3. In Z[ζp] the numbers 1− ζp, 1− ζ2p , . . . , 1− ζp−1
p are all associates and 1 + ζp

is a unit. Further, p = u(1− ζp)
p−1 for some unit u and (1− ζp) is the only prime ideal

in Z[ζp] dividing p.

See [1, page 1, Lemma 1] for a proof.

Lemma 4 (Kronecker). If α is an algebraic integer such that for every automorphism σ
in its Galois group the absolute value of σ(α) is 1, then α is a root of unity.
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See [2, page 4, Lemma 1.6] for a proof of the above lemma.

Lemma 5. For v ∈ Z[ζp]×, v/v is a root of unity.

Proof. For σ ∈ Gal(Q(ζp)/Q) we have σ(v) = σv. Thus v/v and σ(v/v) for all σ ∈
Gal(Q(ζp)/Q) have absolute value 1, as

|σ(v/v)| = |σ(v)||σ(1/v)| = |σ(v)||σ(1/v)| = |σ(v)||σ(1/v)| = |σ(v/v)| = 1.

Therefore by the previous lemma we have that v/v is a root of unity. ■

The roots of unity of �nite order in Z[ζp] are ±ζkp for 0 ≤ k ≤ p− 1.

Theorem 6 (Kummer). For a regular prime p ≥ 3, the equation xp + yp = zp has no
solutions with xyz ̸= 0 and gcd(x, y, z) = 1.

Proof. We divide the proof into two cases. In case 1 we assume that p ∤ xyz. In case 2 we
assume that p | xyz. Also for convenience we write ζ = ζp. We will just do case 1 as case
2 is a bit more involved (the full proof is in [1]; our proof of case 1 also follows what is
discussed there).

We factorise Fermat's equation in Z[ζ] as

zp = xp + yp = (x+ y)(x+ ζ2y) · · · (x+ ζp−1y) =

p−1∏
k=0

(x+ ζky). (1)

We now show that each of the factors (x+ ζky) generate coprime ideals.

For 0 ≤ k < k′ ≤ p − 1, a common ideal factor d of (x + ζky) and (x + ζk
′
y) must be a

factor of the di�erence

x+ ζky − x− ζk
′
y = ζky(1− ζk

′−k) = vy(1− ζ)

for some unit v using Lemma 3. As y(1− ζ) | yp, we have d | (yp). From equation (1) we
have d | (z)p. As gcd(yp, zp) = 1 we conclude that d = (1). Thus the ideals (x+ ζky) are
coprime. As the product of these ideals is (z)p and Z[ζ] is a Dedekind domain, unique
ideal factorisation holds so that each factor is a pth power. Then (x+ ζy) = ap for some
ideal a. So ap is trivial in CQ(ζ) and as p ∤ h = h(Q(ζ)) we have a trivial in CQ(ζ). Thus
a is principal, so a = (t) for some t ∈ Z[ζ]. So there exists a unit u ∈ Z[ζ] such that
x+ ζy = utp.

Writing t = b0 + b1ζ + · · ·+ bp−2ζ
p−2 (not upto p− 1 as it would become zero then) with

bk ∈ Z we get

tp ≡ bp0 + (b1ζ)
p + · · ·+ (bp−2ζ

p−2)p ≡ bp0 + bp1 + · · ·+ bpp−2 mod pZ[ζ] (2)

and hence tp ≡ tp mod pZ[ζ]. By Lemma 5, we have u/u = ±ζk for some o ≤ k ≤ p− 1.
If u/u = ζk then

x+ ζy = utp

= ζkutp

≡ ζkutp mod pZ[ζ]
≡ ζk(x+ ζy) mod pZ[ζ].
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Thus (using ζkζ = ζk−1)

u/u = ζk =⇒ x+ yζ − yζk−1 − xζk ≡ 0 mod pZ[ζ]. (3)

Similarly
u/u = −ζk =⇒ x+ yζ + yζk−1 + xζk ≡ 0 mod pZ[ζ]. (4)

We'll now show that neither congruence holds for 0 ≤ k ≤ p − 1 and x, y coprime to p.
As x, y are nonzero mod p the above congruences appear to show linear dependence over
Z/(p) among certain powers of ζ in Z[ζ]/(p). But in Z[ζ]/(p) the powers 1, ζ, . . . , ζp−2 are
linearly independent over Z/(p) as

Z[ζ]/(p) ∼= Z[X]/(p,Φp(X)) ∼= (Z/(p))[X]/Φp(X) ∼= (Z/(p))[X]/(X − 1)p−1,

and {1, X, . . . , Xp−2} is a basis of the last ring over Z/(p). For those k ≤ p− 1 such that
1, ζ, ζk−1, ζk are distinct powers in the set {1, ζ, . . . , ζp−2} i.e. as long as 0, 1, k − 1, k are
distinct integers with k ≤ p− 2 the congruences in (3) and (4) both yield a contradiction.
So for 3 ≤ k ≤ p − 2 there is a contradiction in case 1. Now it remains to check the
remaining cases k = 0, 1, 2, p− 1.

First, we may assume that p ≥ 5 as the equation x3+ y3 = z3 has no solutions in integers
coprime to 3; even the congruence x3+y3 ≡ z3 mod 9 has no solutions in integers coprime
to 3 as the cubes of units mod 9 are ±1.

For k = p− 1, in (3) the left side becomes

x(1− ζp−1) + y(ζ − ζp−2) = 2x+ (x+ y)ζ + x(ζ2 + · · ·+ ζp−3) + (x− y)ζp−2

which contradicts the linear independence of 1, ζ, . . . , ζp−2 mod p over Z/(p) by looking
at the coe�cient for ζ2 (for example). A similar contradiction is reached for (4).

For k = 0, (3) becomes y(ζ − ζ−1) ≡ 0 mod pZ[ζ] and as p ∤ y we can divide by it and
get ζ2 − 1 ≡ 0 mod p which contradicts the linear independence of 1 and ζ2 mod p since
p ≥ 5. Similarly (4) becomes 2xζ + yζ2 + y ≡ 0 mod p which is again a contradiction.

For k = 2 we get similar contradictions of linear independence. So we're left to check
k = 1. For k = 1 (4) implies (x+ y)(1+ ζ) ≡ 0 mod p so x+ y ≡ 0 mod pZ using Lemma
3. Thus zp = xp + yp ≡ (x+ y)p mod p so p | z. This contradicts our assumption p ∤ xyz.
Finally, we need to show (3) leads to a contradiction.

Summarising our results so far, we have shown that if xp + yp = zp and p ∤ xyz then
x+ ζy = utp where u/u = ζ. Setting k = 1 in (3) yields

x(1− ζ) + y(ζ − 1) ≡ 0 mod p. (5)

Using Lemma 3, p = u(1− ζ)p−1 in (5) implies

x ≡ y mod (1− ζ)p−2.

Since p− 2 ≥ 1 and x, y ∈ Z this forces x ≡ y mod pZ. Observe that xp + yp = zp ⇐⇒
xp − zp = −yp. So we can interchange y and −z to get x ≡ −z mod pZ, so

0 = xp + yp − zp ≡ 3xp mod p.

As p ̸= 3 and p ∤ x we have a contradiction. Thus, there are no integer solutions xyz ̸= 0
to Fermat's equation for p being a regular prime not dividing xyz. ■

Approximately 61% of all primes are conjectured to be regular [2, pages 62-63] so the fact
that FLT holds for regular primes is a very signi�cant result.
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