Ex/SC/MATH/UG/MAJOR/TH/11/102/2024

BACHELOR OF SCIENCE (MAJOR) EXAMINATION, 2024

(First Year, First Semester)

MATHEMATICS

PAPER: CORE - 02

(Geometry and Linear Algebra)

Time: 2 Hours

Full Marks: 40

Use separate answer scripts for each Part.

PART-I (20 Marks)

Answer any five questions from the following: (4×5)

- 1. A sphere of radius 2k passes through the origin and meets the axes in A, B and C respectively. Show that the locus of the centroid of the tetrahedron OABC is the sphere $(x^2 + y^2 + z^2) = k^2$.
- 2. Find the equation of the cone with vertex at origin, which passes through the curve of intersection of plane lx + my + nz = p and $ax^2 + by^2 + cz^2 = 0$.
- 3. PSP' is a focal chord of the conic. Prove that the angle between tangents at P and P' is $\tan^{-1}\left(\frac{2e\sin\alpha}{1-e^2}\right)$, where α is the angle between the chord and the major axis.

MATH-323 [Turn Over]

- 4. Obtain the equation of the cylinder, whose generators intersect the plane curve $ax^2 + by^2 = 1$, z = 0 and are parallel to the straight line $\frac{x}{l} = \frac{y}{m} = \frac{z}{n}$.
- 5. Prove that the length of the common chord of circles $(x-a)^2 + (y-b)^2 = c^2$ and $(x-b)^2 + (y-a)^2 = c^2$ is $\sqrt{4c^2 2(a-b)^2}$.
- 6. Show that the area enclosed by the curve in which the plane

$$z = h$$
 cuts the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ is $\pi ab \left(1 - \frac{h^2}{c^2} \right)$.

PART—II (20 Marks)

Let \mathbb{R} denote the field of all real numbers.

Answer any four questions:

4×5

1. Define a *subspace* of a vector space. Determine whether S is a subspace of \mathbb{R}^5 , where

$$S = \left\{ (a_1, a_2, a_3, a_4, a_5) \in \mathbb{R}^5 \mid a_1^2 + a_3^2 = 0, 2a_2 + 3a_5 = 5a_4 \right\}$$

Find a basis and the dimension of S over \mathbb{R} if S is a subspace of \mathbb{R}^5 .

2. Solve the following system of linear equations by Gaussian elimination process:

$$x_1 - 2x_2 + 2x_4 - 6x_5 = 4$$

 $2x_1 - 4x_2 + 2x_3 + 4x_5 = 6$
 $x_1 - 2x_2 + 3x_3 - 3x_4 + 10x_5 = 16$

- 3. Define a *basis* of a vector space. Find a basis of \mathbb{R}^5 that contains $\{(1, 0, -4, 3, 5), (-2, 1, 2, 2, -3)\}$.
- 4. Define V be a finite dimensional vector space over \mathbb{R} . Let $T: V \to V$ be a linear transformation. Prove that T is one-to-one if and only if T is onto.
- 5. Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation defined by T(x,y,z,t) = (x+5y-3z+t, 4z-5t).

Find the matrix representation of T with respect to the ordered bases

$$\{(1,-1,1,0),(0,2,-2,1),(1,1,1,1),(3,2,1,0)\}$$
 and $\{(2,3),(5,7)\}$ of \mathbb{R}^4 and \mathbb{R}^2 respectively.

6. Find eigenvalues and corresponding eigen-spaces of the matrix and determine whether it is diagonalizable.

$$\begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix}$$
 1+2+2

EX/SC/MATH/UG/MAJOR/TH/12/103/2024

BACHELOR OF SCIENCE EXAMINATION, 2024

(1st Year, 2nd Semester)

MATHEMATICS (HONOURS)

PAPER: MAJOR - 03

(Algebra)

Time: 2 Hours

Full Marks: 40

PART—I

(Marks: 28)

CO 1: Answer any one question:

1. (a) Define a group. Verify whether the following set G of real matrices forms a group under usual matrix multiplication:

$$G = \left\{ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} : A^T A = I_2 \right\}$$

where I_2 is the identity matrix of order 2.

4

(b) Define a Boolean ring. Let R be a Boolean ring. Show that 2x = 0 and xy = yx for all $x, y \in R$.

MATH-807

1 Turn Over 1

- 2. (a) Define the order o(a) of an element a of a group. Let G be a group and $a, b \in G$ be such that $b \neq e, a^3 = e$ and $aba^{-1} = b^2$. Show that o(b) = 7.
 - (b) Define an integral domain. Prove that a finite integral domain is a field.

CO 2: Answer any one question:

- 3. (a) Define a subgroup. Prove that an infinite group has infinitely many subgroups.
 - (b) Prove that any finite subgroup of the group of nonzero complex numbers (with usual multiplication) is a cyclic group.
- 4. (a) State and prove Lagrange's theorem for finite groups.
 - (b) Let G be a finite group and $a \in G$. Show that $\circ(a)$ divides $\circ(G)$.

5

CO 3: Answer any one question:

5. (a) Define a normal subgroup of a group. Let H be a subgroup of a group G. If for each $a \in G$, there exists $b \in G$ such that aH = Hb, then prove that H is a normal subgroup of G.

MATH-807

- (b) Prove that the quotient group $(6\mathbb{Z}/30\mathbb{Z}, +)$ is isomorphic to the group $(\mathbb{Z}_5, +)$.
- 6. (a) Define the kernel of a homomorphism of groups. Prove that every normal subgroup of a group G is a kernel of some homomorphism defined on G.
 - (b) How many homomorphisms can be defined from the symmetric group S_3 to the group $(\mathbb{Z}_6, +)$? Justify. 3

CO 4: Answer any one question:

- 7. (a) Let G be a finite commutative group and $a, b \in G$ such that o(a) = 30 and o(b) = 40. Prove that G has an element of order 120.
 - (b) Prove that every commutative group of order 15 is a cyclic group.
- 8. (a) Prove that $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$ if and only if gcd(m, n) = 1 for all $m, n \in \mathbb{N}$.
 - (b) Prove that every even permutation of S_n is a finite product of 3 cycles.

(4) PART—II

(Marks: 12)

Answer any two questions from (1 to 3) and any one from (4 to 5):

1. Show that the roots of the equation

$$\frac{1}{x+a_1} + \frac{1}{x+a_2} + \dots + \frac{1}{x+a_n} = \frac{1}{x+b}$$

are all real, where $a_i, b \in \mathbb{R}^+$ with $b > a_i \ \forall i$. 4 [CO1]

2. If $a, b, c \in \mathbb{R}^+$, then show that

$$\frac{9}{a+b+c} \le \frac{2}{a+b} + \frac{2}{b+c} + \frac{2}{c+a} \le \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$
 4 [CO2]

- 3. (a) Find the nature of the roots of the equation $x^6 1 = 0$.
 - (b) If the roots of the equation $x^3 + px^2 + qx + r = 0$ $(r \neq 0)$ are α , β , γ , then find the equation whose roots

are
$$\frac{\alpha+\beta}{\gamma}$$
, $\frac{\beta+\gamma}{\alpha}$, $\frac{\gamma+\alpha}{\beta}$. 2+2 [CO1]

4. Solve the equation $x^3 - 6x + 4 = 0$ by Cardan's method.

4 [CO2]

5. Solve the equation $x^4 - 6x^2 + 16x - 15 = 0$ by Ferrari's method. 4 [CO2]