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§1 Classical Algebra

§1.1 Theory of equations
§1.1.1 The Fundamental Theorem of Algebra

Remark. When we speak of ”a polynomial” we shall mean a univariate polynomial
(usually in ) unless stated otherwise.

The set of all polynomials in x with coefficients over a field F is denoted by F|x], and
it forms a Fuclidean domain with the degree of any f € Flx| being the norm deg(f)
(which we will define in the section on ring theory). In particular, if f, g € F[z]| then

deg(f o g) = deg(f) + deg(g).

We consider f € Rlz] with deg(f) = n, of the form
n .
flz) = Z a;z" ) = apx" + a1z + -+ a1+ ap.
7=0

We say o € C is a root of f iff f(a) =0. Suppose (o)}, are the roots of f, then

n

f(x) =ao H(:c —a;) =ap(x —ag) - (x — ap).

=1

Note that we haven’t assumed the roots «a; to be distinct; the number of times a particular
root oy repeats in the sequence (o)}, is called the multiplicity of «;.

Definition 1.1 (Algebraically closed)

We say a field F is algebraically closed iff every non-constant polynomial in F|z]
has a root in F.

Remark. We saw in Real Analysis that the field of rationals QQ is not complete: in
particular, there is no solution to the polynomial equation 2> — 2 = 0 in Q. The field
of reals R comes about as a completion of the rationals, with the least upper bound
property of the reals allowing us to solve equations such as 22 — 2 = 0.

Similarly, we find that the polynomial equation 2 + 1 = 0 has no solutions in R. We
thus say that R, and certainly also Q, are not algebraically closed. In order to solve
22 +1 = 0 we need the field of complex numbers C due to its following nice property.

Theorem 1.1 (Fundamental Theorem of Algebra)
C is algebraically closed.

Proof. This proof is due to Fefferman. To show that C is algebraically closed,
n

consider an arbitrary polynomial P € C[z] : P(z) = Z a;2" 7. Then it suffices to
=0

show that P has a zero. First we show that |P(z)| attains a maximum as z varies
over the entire complex plane, and next that if |P(zg)| is the minimum of |P(z)],
then P(zp) = 0.
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Since |P(z)| = |2]" Zajz_j (z # 0) we can find an M > 0 so large that
=0

2| > M = [P(2)] = |ax| (1)

whilst the continuous function |P(z)| attains a minimum as z varies over the compact
disc {z € C: |z] < M}. Suppose, then, that

|2l < M = [P(2)] = |P(20)] - (2)

In particular, P(z9) < P(0) = |ay| so that, by (1), |z| > M = |P(z0)| < |P(z2)|
and using (2) we thus get that

|P(2)| 2 |P(20)| (Vz € C). 3)

Since P(z) = P((z — 20) + 20) we may write P(z) as a sum of powers of z — zp, so
that for some polynomial @ € Clz],

P(z) = Q(z — 2). (4)

By (3) and (4),
1Q(2)] = [QO)] (vz € C). ()

By (4) P(z0) = Q(0) so it suffices to show that Q(0) = 0. Let k be the smallest
nonzero exponent for which z* has a nonzero coefficient in Q. Then we can write

Q(2) = cn + Coi?® + i cn—j? (Cn—k #0)
Jj=k+1
— IR e Clz]: Q(2) = cn + crp2® + Z*1R(2) (cpi #0). (6)
Set —cn/cn_r = re® and z; = r1/keif/k then
Cri 2 = —cp. (7)
Let € > 0 be arbitrary, then by (6),
Q(ez1) = cn + crpe®2F + FT LR (e). (8)

Since polynomials are bounded on finite discs, we can find an N > 0 so large that,
for 0 <e <1, |R(ez1)] < N. Then, by (7) and (8) we have, for 0 < e < 1,

n + cnope®2f| + 54 |21 | R(ean)

|Q(e21)| <

< ‘cn + sk(cn_sz)‘ + R (|2 FFL )

Cn — Cngk‘ + Ek+1(|zl|k+1 N)
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= lea] (1 — %) + ([ N)
= lenl = ¥ Jenl + 41 (| " V) (9)

If ¢, # 0, then take ¢ so small that ¥+1(|z; "™ N) < &¥ |¢,|. Thus, by (9)
Q(e21)] < Jeal = €* lea] + 1 (|22 N) < Jen| = ¥ [enl + € [enl = lea] = 1Q(0)]

which contradicts (5). So |¢,| = 0 and thus Q(0) = ¢, = 0. O

Theorem 1.2

The following are equivalent:
1. The field of complex numbers is algebraically closed.
2. Every non-constant polynomial with complex coefficients has a complex root.

3. Every nonzero polynomial of degree n with complex coefficients has exactly n
complex roots.

Proof. (1.) <= (2.) by definition. Now to show (2.) <= (3.). That (3.) = (2.)

is obvious, so we show (2.) = (3.). Suppose f € Clz] : f(z) = Zajx"*j with
=0

deg(f) =n (so ap # 0). Then using (2.) there exists a; € C: f(ay) = 0, so by the

factor theorem for polynomials (x — «) is a factor of f ie. f(z) = (z — a1)fi(x)
for some f; € C[z] : deg(f1) = n — 1 with leading coefficient ay.

Again, using (2.) there exists ag € C: f1(a2) = 0 and again by the factor theorem
fi(z) = (z — ag) fa(x) for some fy € Clz] : deg(f2) = n — 2 with leading coefficient
ap. In this way we get fr_1(x) = (z—ay) fr(x) for k = 2, ..., n with deg(fx) = n—k,
ar € C. Then deg(f,) =0 = f, is the constant function f,(z) = ap so that
fn—l(l') = (.I - an)CLO-

Thus, we have f(z) = (z — aq) f1(z)
= (z — a1)(z — az) fa(x)
= (z —a)(z —ag) - (z — an) fu(2)

=(z—a1)(r—a2) - (z — an)ag

S f(@)=aplx —aq) - (x — ay) = ap H(:U — ;).

j=1
Now suppose there exists 5 € C: f(8) =0 and 3 # o for j =1,...,n. Then

FB)=ao[[(B—a;)=0
j=1
(GQ#O) - B:Oéj Vi=1,...,n.

An absurdity. This means that (Oéj)?zl are all the possible zeros of f, so f has
exactly n zeros. O
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Theorem 1.3 (Complex conjugate root theorem)

If feR[z]: f({) =0 for some ¢ € C, then f({) =0.
Proof. Let f(z) =37, an—;x? with each a,_; € R. Then, f(¢) =0

— En:anfjcj =0

J=0
n

- Zan_jCj =1
J=0

— Zn:an_jcj =0
j=0

Thus, f(¢) =0. O

Remark. The above proof only worked because all the coefficient were real, so a,_ =
an—%- Indeed, the complex conjugate root theorem is not necessarily true for f € Clx].

Theorem 1.4 (Conjugate radical root theorem)
If P eQx]: P(s+ ty/u) =0 for some s,t,u € Q, Ju & Q, then P(s —t\/u) =0.

Proof. Put Q(z) = P(s+tx) = 3. bpa®. Clearly, the by, are rational, and Q(y/u) = 0.

We have
QW) =) b + Vuy D2 = A+ VuB.

2k 2k

Now as A, B are rationals and /u not, we must have A = B = 0, and hence
Q(—v/u) = A— /uB =0, and we are done. O

Remark. Viete found the following identities relating the roots of a polynomial with
its coefficients.

Lemma 1.1 (Viete's relations)

If feClz]: f(z) =ao H(m — ;) = Zajx”_j, (ap # 0) and
i=1 =0

o1 = E QG 02 = E OéiOlj, vy, Op = H (673

1<i<n 1<i<j<n 1<i<n
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with
=2 |1l
1<ii < <ip<n \1<i<k
in general, then:

ai
0'1:—0170, cee O'k:(—].) ;0, cee Un:(—l)n?O

Proof Sketch. Observe that

and

< H(QZ—O[Z):O

i=1
= 2" (a1t Fan) 2" M (@agt At an_10)3" 24 (=) (a1 - ap) = 0
= 2" — 012" o™ 2+ + (=)o F -+ (=1) 0,

n
=z" + Z(—l)kakxnfk =0
k=1

thus oy, = (—l)k%. O
ao

Remark. Observe that the above relations are all polynomials in the roots (), of
the polynomial f(x); moreover they are symmetric with respect to the roots (a;)7,,
i.e., the relations remain invariant under any permutation of the roots. We call these
ols elementary symmetric polynomials. We will study symmetries in general in group
theory.

Before concluding this section we note that it is often easier to work with monic poly-
nomials (polynomials having leading coefficient of 1). So we often divide by the leading
coefficient:

an_laj+% =0 (ag #0).

apr" + -+ ap1r+a, =0 <= "+ +
a ag

— "+ +bhx+b=0

Gn—j
ag

where b; =

§1.1.2 Descartes’ rule of signs
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Fact 1.1
We consider f € R[z]: f(z) = Zaj:c"*j.
j=0

The number of positive roots of f(z) = 0 does not exceed the number of variations
signs in the sequence (sgn(a;))j_y of the signs of the coefficients of f(z), and if less
it is less by an even number.

Consequently, we also have that the number of negative roots of f(z) = 0 does not
exceed the number of variations of signs in the sequence

(sgn(b)))j=o = (sgn((=1)’a;))i=

of the signs of the coefficients of f(—x), and if less it is less by an even number.

Example 1.1
Let f(z) = 52® — Tz* + 22 — Tz + 8, then f(—z) = 52® — Tx* + 2% + Tz + 8.

The sequence of signs of the coefficients of f(x) is (+1,—1,+1,—1,41). There are
4 variations so the no. of positive roots of f(z) =01is 0,2 or 4.

The sequence of signs of the coefficients of f(—x) is (+1, —1,+1,+1,+1). There are
2 variations so the no. of negative roots of f(z) =0 is 0 or 2.

deg(f) = 6 means that it has 6 complex roots by the Fundamental Theorem of
Algebra. So the number of non-real complex roots can be 0,2, 4, or 6 by the complex
conjugate root theorem. So we can summarise the nature of the roots of f(x) as
follows:

Positive real H Negative real H Non-real complex

4 2 0
4 0 2
2 2 2
2 0 4
0 2 4
0 0 6

§1.1.3 Transformation of Equations

Remark. Given a polynomial equation it is possible, without knowing the roots, to
obtain a new equation whose roots are connected with those of the original equation by
some assigned relation. The method of finding this new equation is called a transforma-
tion. Such a transformation is occasionally useful for studying the nature of the roots
of the given polynomial which might have proved difficult otherwise.

In general, given a polynomial equation f(x) = 0: f € F[z], we are to obtain another
polynomial equation ¢(y) = 0 : ¢ € F[z] whose roots are connected with the roots of
f(z) by some relation ¢ (x,y) = 0.

We obtain ¢(y) = 0 by eliminating = between f(z) =0 and ¥ (x,y) = 0.
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§1.1.4 Cubics

Remark. We already know how to solve quadratic equations of the form az?+bx+c = 0
by completing the square:

ax® +br +c=a(xr +bH)? — ab®H? + ¢

— az’ 4 bz + ¢ = ax® + 2abHzx + ab>H? — (ab*H? — ¢)
1 b b? — 4dac
s 57 a(m+2a) 1 0

and consequently

. —b++vb? — 4ac
a 2a '

A corollary of the quadratic formula is:

Lemma 1.2

Given any M, N € C, there exist g, h € C: g+ h = M and gh = N; moreover, g
and h are the roots of 2 — Mx + N.

Proof. The quadratic formula provides roots g and h of > — Mx + N. Now,
22 — Mz + N = (z—g)(x —h) =22 - (g+h)z + gh

and so g+ h =M and gh = N. O

Remark. Arising from a tradition of public mathematics contests in Venice and Pisa,
methods to solve equations of degree 3 (cubics) and 4 (quartics/biquadratics) were found
in the early 1500s by del Ferro, Tartaglia, Ferrari and Cardano.

We now derive the general formula for the roots of a cubic. The change of variable
X =z- 3% transforms the cubic f(X) = aX? + bX? + c¢X + d into a simpler cubic
polynomial f(z) with no quadratic terms:

b 3ac — b2 2b% — 9abe + 27a2d
F(x—)—f(:z):aaz3+(ac )IL‘+ ey 2la

3a) 3a 27a2

3, (3ac — b?) n 203 — 9abe + 27a%d
32" 2743

q T

::c3+qx—|—r
SO,F(ZL'—%) = f(z) = 2% +qv +r.

Theorem 1.5 (Cubic Formula)
The roots of f € R[z] : f(x) = 23 + qx + r are

oy =g+ h, agzwg+w2h, a3:w29+wh,

where g% = %(—r—i—\/ﬁ), h = —q/3g, R = r* + %q?’ and w = —%—Fi? is a
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primitive cube root of unity. Moreover,

R >0 = one real root, two complex conjugate roots
R =0 = three real roots, at least two equal
R <0 = three distinct real roots

Proof. Write a root u of f(z) = 2% + qz +r as
u=g-+h,
where g and h are to be chosen, and substitute:
0=f(u)=flg+h)
=(g+h)?>+q(g+h)+r
=g*+ R +3gh(g+h)+q(g+h)+r

= g3+ h*+ (3gh + qu + 7.

If 3gh + ¢ = 0 then gh = —q/3. By Lemma (1.2), given u, —q/3 € C there exist
g, h € C: g+ h = u and gh = —¢q/3; this choice forces 3gh + ¢ = 0, so that
g + h3 = —r. Cubing both sides of gh = —¢/3 we get

By Lemma (1.2), there is a quadratic in g*:
@ +rgd—g3/21=0.

The quadratic formula gives

1 / 4 1
3_ 2 _ 24 .3 — = (_
g 2( r+aAlr +27q> 2( T+\/§)

and h3 = —r—g3 = % (—r — \/E) is also a root of this quadratic. So ¢ —h® = V/R.

There are three cube roots of g>: g, wg, and w?g. Due to the constraint gh = —q/3,
each of these has a "mate”: g and h = —q/(39); wg and w?h = —q/(3wg); w?g and
wh = —q/(3w?g) (for w® =1).

When R < 0, we have 72 + %qg = —k? so that

g3=%<—r+\/ﬁ>:%<—r+i\/%), h3:%(_r_\/ﬁ>:

(—r - m/%) .

N | —

Set —§ = pcos(f), % = psin(f) where 6 € (—m, 7). Then

4 3

g® = p(cos(8) + isin(f)) and p? = o

10
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so using de Moivre’s theorem we get three values of g =

Qs (). (57 (55).
Ip (cos (477; 0) +isin (4”;9»

and as gh = —q/3, corresponding values of h will be R(g) — S(g); thus inu=g+h
the imaginary parts cancel out and we get real roots (as ¢ < 0 when R < 0)

A B S A I L N e E
3 q cos 3 ) 3 q cos 3 , 3 q cos 3 .

Example 1.2
If f(x) = 2® — 152 — 126, then ¢ = —15, r = —126 and

4
R=r%+ 27(] = 15876 — 500 = 15376 > 0.

Thus, g3 = $(126 +124) =125 = g=5, h= 1.
So the roots are x = 6, 5w+ w? = -3 + 2i\/§, 5w2 +w = —3 — 2i/3.

Alternatively, having found one root to be 6, the other two roots can be found as
the roots of the quadratic f(z)/(z — 6) = 2% + 6x + 21.

Example 1.3
If f(z) = 2® — Tz + 6, then ¢ = —7, r = 6, and

4 . 9721372 400
— 2 — 3 = — =
R=r"+524 97 57 <V

1 20V/3 1 20v/3
theng+h:32(—6+i S;f>+i12<6i$;[>

9
7 T — arctan f) m — arctan (%)
=4/ = + ¢sin
3 3
7 T — arctan 2‘7/§> m — arctan <%*7/§)
+ g — ¢ sin 3

11
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_2\/7 w—arctan(—lg\{g) _, z § _,
= 3 CoS 3 = 3 - =2

The other two roots are then

7 21 + m — arctan (%) 7(_3 [3
24/ = | cos =0/ =1/ | =-3,
3 3 3\ 2 7
and
) Z 47 + m — arctan <%\7/§> _, Z 1 § .
3| 3 ““V3la2V7) T+

Thus, f(z) = (z — 1)(z — 2)(z + 3).

§1.1.5 Quartics
Remark. We conclude this chapter with a discussion of quartic polynomials.

Consider the quartic F(X) = X% +bX3 +¢cX? +dX + e (if it isn’t monic we can always
transform it into a polynomial that is monic). As before, we do a change of variable
X=x— ib to get a simpler polynomial

1
F(az—4b> = flx) =2+ q* +ro+s

whose roots yield the roots of F(X): if f(u) = 0 then F (u— %b) = 0. The quartic
formula was found by Ferrari in the 1540s, but the version we discuss is from the work
done by Descartes in 1637. Factorise f(x) into two quadratic terms,

fx)=a* +qz® +ra+ s = (2® + jo + ) (2% — jz +m)

and determine j, £, m (the linear terms have coefficients j and —j as f(z) has no cubic
term). Expanding and equating like coefficients yields,

€+m_j2:Q7
j(m—ﬁ):r,
Im = s.

The first two equations give,

2m = j%>+q+r/j,
20 =j%+q—r/j.
Substututing these values for m and £ into the third equation yields a cubic in 52, called

the resolvent cubic:
(%) +29(%)* + (% — 45)5% —r*.

The cubic formula gives j2, from which we can determine m and ¢ and hence the roots
of the quartic.

12
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§1.1.6 Exercises
Exercise 1.6. Prove that the roots of the following equations are all real.

1 z”: ! —l a; € RT
'izlx—l-ai_x’ ’ '

2 i 1 —l a; € R™
" Lagpta; " ’
=1
Bi 1 _ 1 ba; e RT, b>a;
'i:1m+ai_x+ba s Lo ) e
n
1 1
4. = , bya; R, b < a;.
;w—kai z+b i @i

n
A;
5. = b, bya;, A; € R, A; > 0.
; "E + a/Z aj —"_ ) ) az? (2 M 1
Exercise 1.7. The roots of the equation x3 + px? + qz +r = 0, (r # 0), are «, f3, 7.
Find the equation whose roots are:

1 1 1 11 1 1 1 1 1
a BBy @y a B
1
2 a/ﬁ"{_*vﬁ’y_‘_ 7'70‘_}'5’
3 _ﬁaﬂ_ﬂ) _%7
g v

A a+pB B+ v+«

0 a B

§1.2 Inequalities

Theorem 1.8 (Triangle Inequality)
If 2,2 € R, then |z +yl| + ly + 21| > o+ 2]|.

Theorem 1.9 (Arithmetic Mean > Geometric Mean > Harmonic Mean Inequality)

If a1, ...,a, are arbitrary elements of R, then

1 — . n
- Z aj | = H aj = (n) .
oy j=1 2

j=1%j

3=

Theorem 1.10 (Weighted Arithmetic Mean > Geometric Mean)

If ay,...,a, are arbitrary elements of R and wi,...,w, are nonnegative weights

13
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with w = wy + - - - + wy, then

1
1 n n w
ws
o2 wie | = (147
j=1 J=l1
Theorem 1.11 (Cauchy-Schwarz Inequality)
If ay,...,a, and by, ..., b, are arbitrary elements of R, then

2

n n n
doa | | 28] = | Xasb
=1 =1 j=1

Moreover, if some a; # 0 equality holds iff there is a A € F such that a;\ +b; = 0
forallj=1,....,n.

Theorem 1.12 (Bernoulli's Inequality)
If ¢ € R such that x > —1, then for every positive integer n

(I1+2)" > 1+ nz.

Moreover, if x > —1 and x # 0, then (1 4+ )" > 1+ nz for alln > 2.

Definition 1.2 (Convexity)
A function f: Dy — R, Dy C R is convex iff Vt € (0,1) and 7, s € Dy we have:

flr+ 1 —t)s) <tf(r)+ (1 —1)f(s).

Also, f is concave iff —f is convex.

Theorem 1.13 (Jensen's Inequality)
Let f: Dy - R, Dy CR and {xj};?zl C Dy with ay,...,a, being arbitrary positive
reals. If

1. f is convex then

> i a5 f(x5) > i1 45T
S f( ‘ ) |

2. f is concave then

> =105 f(;) <f > i1 05T
Z?:l aj Z?:l aj |

14
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Theorem 1.14 (Minkowski's Inequality)
If p>1and x,...,z, and y1,...,y, are arbitrary elements of R, then

n % n 7 n 5
Z\UCHP + Z\yk’p 2 Z’xk+yk|p
k=1 k=1 k=1

Theorem 1.15 (Holder's Inequality)
Ifpg>1:1/p+1/g=1and z1,...,x, and y1,...,y, are arbitrary elements of R,

then . .
n r) n q n
<Z ’l’k’p> (Z \yk|q> 2 (Z |zx + yk\)-
k=1 k=1 k=1

Theorem 1.16 (Tschebyscheff's Inequality)

If (ag)p—q, (bg)p—, are either both monotonically increasing or both monotonically
decreasing sequences in R, then

(B) = (5) (5]

Theorem 1.17 (Rearrangement Inequality)

If b1, ..., by, is any rearrangement of the positive reals ay, ..., a,, then:

n
jjai

= b
=1

Theorem 1.18 (Weierstrass's Inequalities)
If >0, ar <1:a € (0,1) for some arbitrary positive reals ay, ..., ap, then:

15
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§2 Groups

§2.1 Definitions and motivation
Remark. We first abstract the notion of a linear map and the kernel of a linear map

from linear algebra.

Definition 2.1 (Homomorphism)

A homomorphism is a map f : A — B between two algebraic structures (A, )
and (B, o) such that

a,be A = f(axb)= f(a)o f(b) € B.
The kernel of a homomorphism f is
ker f={a€A: f(a)=¢}= f71({€/})7

where €’ is the identity element of B.

A homomorphism is called a monomorphism if it is injective, epimorphism if it
is surjective, isomorphism if it is bijective, endomorphism if (A4, x) = (B, o), and
automorphism if it is an endomorphism as well as isomorphism.

Condition introduced Mapping type
flaxb) = f(a)o f(b) | Homomorphism
f(a) = f(b) = a ="b || Monomorphism

f(A)=1B Epimorphism
f:A+— B Isomorphism
A=B Endomorphism

A=B & f: A+— B || Automorphism

Remark. In the definition of a homomorphism, we additionally want f(e) = €’ (identity
of A mapped to that of B). However, this condition is redundant for groups. In linear
algebra we were mostly concerned with linear systems of the form

Az = B.

In classical algebra we sought formulas for the roots of a polynomial f(z), involving
only radicals and elementary arithmetic operations on the coefficients of f(z) (if such a
formula exists we say that f(x) is solvable by radicals).

We already know the quadratic formula, and have also seen Cardano’s and Ferrari’s
general solutions for the cubic and quartic cases. Naturally the question arises: is there
such a formula for the quintic case ? Moreover, is there a formula for the roots of
polynomials which generalises the quadratic, cubic and quartic formulas - a formula for
the roots of any polynomial of degree n 7

Evariste Galois, a young student at the Ecole Normale Supérieure, found an answer, by
considering the following object.

Definition 2.2 (Concrete group)
Let X be a set. A group Gx is the set of symmetries of X.
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Remark. A symmetry is another name for permutation. Why did Galois study permu-
tations 7 What could they have to do with formulas for roots ? The key idea is that
formulas involving radicals are necessarily ambiguous. After all, if s is an n'" root of a
number 7 i.e. s” = r, then ws is also an n'" root of 7 (w being any n* root of unity), for
(ws)™ = w"s™ = s™ = r. Recall also Viete’s relations, relating the roots of f(x) in terms
of elementary symmetric polynomials in its coefficients. So we know that the coefficients
of f(x) are symmetric, i.e., they are unchanged by permuting the roots of f(x).

In 1799, Ruffini claimed that the general quintic was in fact unsolvable by radicals. His
proof wasn’t accepted, however, as although his general ideas were, in fact, correct, his
proof had gaps in it.

In 1815, Cauchy introduced the multiplication of permutations and proved basic prop-
erties of what is known as the symmetric group Sy.

In 1824, Abel filled the gaps in Ruffini’s proof by building on Cauchy’s work and con-
structing permutations of the roots of a quintic, using certain rational functions intro-
duced by Lagrange. We now know the result that there is no general quintic formula as
the Abel-Ruffini Theorem.

In 1830, Galois, before meeting a tragic but nevertheless romantic end at an early age due
to his dueling tendencies, realised the importance of what he called groups (subsets of
Sp, which are closed under composition, which we call subgroups) towards understanding
which polynomials of any degree are solvable by radicals. He associated each polynomial
f(z) with a group, now called the Galois group of f(x). He recognised conjugation, nor-
mal subgroups, quotient groups, and simple groups, and he proved that any polynomial
over a field of characteristic 0 is solvable by radicals iff its Galois group is a solvable
group (solvability being a property generalising commutativity).

We will not cover everything that Galois did just yet in this course (we will cover more
in the courses Group Theory, and Field Theory and Canonical Forms of Matrices).
However, we note that since Galois’ time, groups have arisen in many areas within and
beyond mathematics outside of the study of roots of polynomials, for they are a precise
way to describe the notion of symmetry.

We now consider some geometric examples of concrete groups.

17
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Example 2.1

Consider a rectangle, then it has the following symmetries:
1. we do nothing
2. we reflect it horizontally
3. we reflect it vertically
4. we rotate it by 7 radians

We'll return to the geometric interpretation later, noting that the rectangle has a
symmetric group of order 4.

Example 2.2

Consider the five regular Platonic solids. The dodecahedron has symmetries of
order 5, 3, 2 and 1. It has 12 faces, so if we pick one face and put it at the bottom,
we’d have 5 ways to rotate it about its top-bottom axis. So the total number of
symmetries is 5 X 12 = 60, which is the order of its symmetric group. If we were to
count reflections as well, its symmetric group would be of order 120.

Dodecahedron Icosahedron Tetrahedron

Hexahedron Octahedron

The 5 regular Platonic solids.

We'll return to the notion of symmetric group and alternating group later, noting
that the the dual polyhedron of the dodecahedron, the icosahedron, also has a
symmetric group of order 60, the tetrahedron of order 12, and the hexahedron
(cube) and the octahedron of order 24.

18
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Remark. Note that a symmetry can be noncommutative: consider the transformations
of a hexahedron for example.

oT TO

Figure 1: o7 # 70

So it is natural that we should want some operation in which we consider ordered pairs.

Definition 2.3

A binary operation on a set R is a function % : R x R — R, denoted by (r,7’) —
/
e

Remark. As x is a function, it is single-valued; i.e., the law of substitution holds: if
r=r"and s=s thenrxs=r"*s".

The above shows that x is well-defined: the definition of * assigns a unique value
r*s=q € R toevery r, s € R; the same (r,s) € R X R cannot have multiple different
q, q1, ---, qn € R assigned to it (although the same ¢ = 7 * s can coresspond to multiple
different ordered pairs in R x R, so a binary operation need not be injective).

Also note that r,s € R = r* s € R by definition; we say that R is closed under .

We will now make the notion of permutation more precise.
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§2.2 Permutations

Definition 2.4 (Permutations)

Given a set X, a permutation of X is a bijective function o : X — X.

Remark. Then we use our concrete notion of a group to define what is called the
symmetric group.

Definition 2.5 (Symmetric group)

The group of all permutations of X is denoted Sym X, called the symmetric group
on X. If [X| = n for some n € Z*, we write S,, for Sym X. S,, is the symmetric
group on n elements.

Remark. In particular Sym X has the following properties which shall be useful when
we define an abstract group:

e Closure. The composition of two bijective functions from X — X is a bijective
function from X — X.

e Associativity. Composition of functions is associative.
e Identity. The identity function id(x) = x is bijective.

e [nverses. Every bijective function has a bijective inverse.

Definition 2.6 (Permutation group, or group of transformations)

A subset T' C Sym X is called a permutation group, group of transformations,
or transformation group iff T" is a subgroup of Sym X, i.e., T is itself a group.

It should be reasonably clear that |S,| = n(n —1)---1 = nl. We will also normally
use X = {1,2,3,...,n} when we study S,,. When dealing with permutation groups, it’s
helpful to have some notation to express permutations. For a general ¢ € S,,, we write

U:<a(11) 0(22) 05’3) » “?”))

Example 2.3
If we had some o € S5 such that (1) = 2, 0(2) = 3, and 0(3) = 1, we would write

(1 2 3
7=\ 3 1)°
A slightly better notation for when we have a permutation that ‘cycles’ some elements
a,---ai € {1,2,...,n} and leaves the other elements unchanged, we can write
g = (a1 as ak)

which denotes the permutation mapping the elements as follows
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The cyclic nature of this notation also implies that the two permutations (a; az -+ ax) =
(a2 ag --- aj a1). To define this notation slightly more formally, we have

Qi1 if x = a;, (Z < k?)
(al ay - ak) (CC): aq ifl‘:ak

T if © € {a1,a9,...,a;}.

We distinguish between permutations that can be written directly in this form in the
following way.

Definition 2.7 (Cycles and Transpositions)

A permutation of the form o = (a; ag -+ ay) is a k-cycle. If k = 2 then we call it
a transposition.

As cycles are permutations, we can compose them.

Example 2.4 (Composing Cycles)

If we consider the composition of two cycles (1 2 3 4)(3 2 4), this should be a
permutation in S4. Indeed we have

1l— 12
2—4+—1
3—2+—3
4—3+—1

So we actually have that the composition of these cycles is also a cycle®, namely
(1234)(324)=(12).

“This is, in general, not the case

In the example above, the two cycles involved elements that were in both cycles. We
have a specific term for when this is not the case.

Definition 2.8 (Disjoint Cycles)

We say that two cycles are disjoint if no number appears in both cycles.

Lemma 2.1

Disjoint cycles commute.

Proof. Let o,7 € S, be two disjoint cycles. We want to show that o7 = 7o, that
is, for any = € {1,2,...,n}, we have o(7(x)) = 7(c(x)). We have two cases.

If  is in neither o or 7, then o(x) = 7(x) = z, and thus o(7(z)) = 7(0(x)) = =.

Otherwise x is in exactly one of o or 7. WLOG let it be in 0. Then o(z) is also
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in o (and hence not 7), so 7(z) = z and 7(o(x)) = o(z). Thus o(7(x)) = o(x), so
they commute. O

Slightly more surprising is the following theorem

Theorem 2.1 (Writing Permutations with Cycles)

Any o € S, can be written uniquely® as the composition of disjoint cycles.

“Up to the order of the cycles in the composition

Proof. First we show that any permutation can be written as the composition of
cycles. Take o € S, and consider 1,0(1),02(1),.... Since {1,2,...,n} is finite,
there must exist a > b such that ¢(1) = ¢%(1). So 027%(1) = 1. Now let k > 0 be
the smallest integer such that o (1) = 1, which must exist by the previous argument.
Then for 0 <1 < m < k, if 0™(1) = o'(1), then ¢™~!(1) = 1, which contradicts the
minimality of k. So all of 1,0(1),02(1),...,0%(1) are distinct. This gives us our
first cycle (1 o(1) 0(1) o*~1(1)). We can repeat this process for the next number
in {1,2,...,n} that has not already appeared, until eventually every element has
appeared. As o is a bijection, no element can reappear.

We now show that this composition of cycles is unique up to the order of composi-

tion. Suppose we have two such decompositions

o=(a1 - agy )(Ahyy; 0 Ay) o (Qhpy 0 g,,)
= (b1 -+ by )by o bry) e (Brpy v+ D)

and each j € {1,2,...,n} appears exactly once in both. Then we have a; =
b; for some t, and the other numbers in the cycle are uniquely determined by
o(ay),02(ay),.... So we have

(al akl)("'):(bt )()7

since disjoint cycles commute and we can ‘cycle’ the elements in cycles. If we
continue this, we will find that all other cycles match too. O

Now let’s consider an element o € S,,, and specifically we will look at the order of o.

Definition 2.9

The set of cycle lengths of the disjoint cycle decomposition of a permutation o is its
cycle type.

Example 2.5
(123)(56) has a cycle type of 3,2 (or 2,3).

Theorem 2.2
The order of o € S, is the least common multiple of the cycle lengths in its cycle
type.
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Proof. If 0 = 179 -+ -7y is a decomposition of the permutation o as a product of
disjoint cycles, these cycles commute with each other. Hence 0" = 4775 --- ;. and

o=V =€ = Y =p===¢

whence r is a common multiple of o(71),0(72),...,0(7). The smallest of these r’s
is by definition the least common multiple of the orders of the cycles.

On the other hand, the order of a cycle is nothing but its length. O

This theorem gives us an easy way to find the order of the elements in S,: write them
in cycle notation.

Disjoint cycle notation is a useful way to express elements of S,,. Another useful notation
is writing elements as the product of transpositions.

Theorem 2.3 (Writing Permutations with Transpositions)

Let 0 € S,,. Then ¢ is a product of transpositions.

Proof. It suffices to show that we can write any cycle as a product of transpositions.
We observe that

(a1 ay - ak):(al ag) (ag ag)---(ak_l ak).

O]

Unlike the disjoint cycle decomposition, this isn’t unique. For example, (1 2 3 4) =
(1 2)(2 3)(34) =(12)(23)(12)(34)(12). However, the pairity of the number of
transpositions is invariant among decompositions.

Theorem 2.4 (Parity of Transpositions)

Writing o € S, as a product of transpositions in different ways, the number of
transpositions used is always either even or odd, that is, the pairity is invariant with
respect to o.

Proof. Let’s write x(o) for the number of cycles in ¢ in its disjoint cycle decom-
position, including any 1-cycles. We will consider what happens to x(o) when we
multiply o by a transposition 7 = (c d).

e If a cycle does not contain ¢ or d, it will not be affected.

e If ¢ and d are in the same cycle, say (c ag a3 -+ ax_1 d a1 -+ a;), then
composing with (¢ d) gives (¢ axy1 -+ a;)(d ag -+ ag—1). So x(o7) =
x(o) + 1.

e If ¢ and d are in different cycles, we have
(Cag ak)(dbg bl)(cd) = (Cbg bedag ak).

So x(o1) = x(0) — 1.
Thus for any o and any transposition 7, x(0) = x(o7) + 1 (mod 2). We know that

23



Sayan Das (June 30, 2024) Algebra

X(0) is uniquely determined by o, and if we write
/ /
U:eTlTk :e']—l...fi—l7
we can use our result to get

x(o)=x(e)+k=n+k (mod 2)
x(o)=x(e)+l=n+1 (mod 2),

and thus k = (mod 2). O

Because of this invariance, we can distinguish between odd and even permutations.

Definition 2.10 (Sign of a Permutation)

Writing o € S,, as a product of transpositions o = 7175 - - - 7%, the sign of o is defined
as sgn(o) = (—1)*. If k is even, we say that o is even, and if k is odd, we say that
o is odd.

Proposition 2.1
For n > 2, sgn: S, — {£1} is an epimorphism.

Proof. We already know that sgn is well defined, and if x(o) = k and x(¢') = I
for 0,0’ € Sy, then oo’ can be written with k& + [ transpositions, so sgn(co’) =
(=1 = (=1)*(=1)! = sgn(o)sgn(o’), so sgn is a homomorphism. It is also
surjective since sgn(e) = 1 and sgn(1 2) = —1. O

There is an important group that comes from sgn being a homomorphism.

Definition 2.11 (Alternating Group)

The alternating group A, is the kernel of the homomorphism sgn : S,, — {£1},
that is, it’s the group of even permutations.

Theorem 2.5
|An| = %| Sn ‘

Proof. Let B, = S, \ A, = |An| + |Bn| = |S»| as a permutation is either even or
odd. Define ¢ : A, — B, s.t. p(a) = (1 2)a. (1 2) is odd and a is even so (1 2)a is
odd. Now,

pla) = p(b) = (12)a=(12)b
— (12)(12)a=(12)(12)b = a=0.

Thus, ¢ is injective. Moreover,
yeEB, = (12)ye A,

= dr=(12)yc A, :9(x)=(12)z=(12)(12)y=y.
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Thus, ¢ is surjective, so ¢ : A, — B, is a bijection. Thus

1
Anl = |Bn| = =|Sn|-
| 4al = |Bal = 5155

Theorem 2.6

For n > 3, A, is generated by 3-cycles, or, equivalently, every even permutation is
the product of 3-cycles.

Proof. Let a € A,

Then « is a product of 2m transpositions:

o= Q1 Qom.

As there are 2m transpositions, we can express « as the product of m pairwise
products of transpositions

a=p1Bm, Bi = azi—109;.
Each g; is the product of 2 transpositions, so either
Bi = (a b)(c d)
= (a cb)(cda).
or Bi=(a b)(bc)
= (a cb).

So, either ; is a 3-cycle or it is the product of 3-cycles.

So « is a product of 3-cycles. O
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§2.3 Abstract groups

Definition 2.12 (Abstract group)

A group is a set G with a binary operation G x G — G (usually written (a,b) —
a+b,axbya-baob,or just ab) such that

1. There is an identity element in G (denoted e, 1, or 0) such that ea = a = ae
for every a in G.

2. For every a € G there exists an inverse element ¢~ € G such that aa™! =

e =a"la.

3. The operation is associative: (ab)c = a(bc) Va,b,c € G.

If the operation is (a,b) — a + b, G is an additive group. If the operation is
(a,b) — ab, G is a multiplicative group. By default, we write the operation the
multiplicative way. If we do not require the second axiom (ezistence of inverses),
then we have a monoid. If we do not require the first axiom (existence of identity)
and second axiom, then we have a semigroup. If we only require closure, then we
have a groupoid (or magma).

Axiom introduced Algebraic structure
Closure Groupoid (or magma)
Associativity Semigroup
Identity Monoid
Inverse Group

Groupoid
(magma)

GxG— G:(a,b)— ab

Figure 2: Some abstract algebraic structures
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Definition 2.13 (Subgroup)

Let G be a group. A subset H C G is a subgroup of G iff H contains e and
a,be H = ab ' e H.

Remark. It is clear that if we take the composition of symmetries as our binary relation,
then the concrete notion of a group can be translated to the abstract notion. It is a subtle
and important point that the converse is also true, which is what Cayley’s Theorem says
as we shall see in the next section.

Also, it is clear from the examples of the symmetries of a cube, the composition of
permutations, subtraction of numbers and product of matrices (from linear algebra)
why we want ordered pairs in the binary operation: as ab and ba can be different.
Nevertheless, there are examples of groups where the commutative law ab = ba holds,
such as Ss. In fact, Abel proved that if the Galois group of a polynomial is commutative,
then f is solvable by radicals. As a result,

Definition 2.14

A group G is called abelian iff it satisfies the commutative law:
ab = ba

for every a, b € G.

Definition 2.15 (Order and Cayley table)
The order of a group is the number of elements in it, and if the order of a group is

finite then the group is called a finite group.

For a finite group G = {a1 = e,as,...,a,}, we can draw a multiplication table,
called Cayley table, as follows

[N ) . Qj “. Qp,
e
a; NN ;a5
Qn

where a;a; is tabulated in the intersection of the row headed by a; and column
headed by a;.

There are many examples of groups.

Example 2.6

(Exercise: Show that the following examples satisfy or do not satisfy the group
axioms, whichever is applicable, explicitly.)

1. The trivial group is the set {e} containing just the identity.

2. The set Sym X of all permutations of a set X, with composition as binary
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operation and 1x = (1) as the identity, is a group, called the symmetric
group on X.

For a finite set X with |X| = n the symmetric group is denoted as S,. The
groups S, for n > 3 are nonabelian because (1 3 2) and (1 3) do not
commute:

(13201 3)=0102#£0B 2=01 3)1 3 2.

The set of even permutations, called the alternating group A,, is the kernel
of the homomorphism
sgn : S, — {1},

and |
Al = =|S,].
[ 4nl = 51S0]

3. Consider A, B,C € M,(F) (the set of square matrices of order n over the field
F) with addition operation +. Then A + B € M, (F) so it is closed under
addition. Also A+ (B+C)=(A+B)+Cand A+ (-1)(A)=A—-A=0
where O is the n x n zero matrix and (—1) is the inverse of the identity element
of F. In fact we also have A+ B = B+ A. Thus, (M,(F),+) is an abelian
group.

4. Consider the same set as above, but with matrix product - : M, (F) x M, (F) —
M, (F), (A, B) — P defined by

Dij = Z @ik bg; .-

1<k<n
So,
ailr ... Qin b11 ©00 bln
AB =

apl ... Qpp bnl cee bnn

b11 bin
(an c. aln) . (an ce aln)

bn1 bnn

b11 bln
(anl e ann) : S (anl e ann) :

bnl bnn
P11 --- Pin
Pn1 --- Pnn

which is clearly in M, (F). However, it may so happen that det(A) = 0, i.e.,
that A is singular <= there is no B € M, (F) such that AB = I where I is
the n x n identity matrix. So A may not be invertible, and this set therefore
can’t be a group under matrix product unless subjected to certain constraints
as in the following examples.
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5.

10.

11.

For a field F and positive integer n consider the set

nonsingular

—N—
QLo (F) = {A € My(F) : det(A) # 0}

with the operation of matrix multiplication. If A, B € GL,,(F) then A~!, B~!
exist. Now, (AB)~! = B~14A7!. Now

1

det(B~'A™") = det(B" det(4 ™) = e

#0

So AB is nonsingular, thus the operation is closed. Matrix product is asso-
ciative, I is the identity, and every element, being nonsingular, has an inverse
by definition. Thus, GL,(F) forms a nonabelian group, called the general
linear group.

Note that, GL,(F) is not an additive group as clearly 0 ¢ GL,(F), and, in
fact, GL,(IF) is not even closed under +.

. For a field F and positive integer n the set

SL,,(F) = {A € My (F) : det(A) = 1}

is also a nonabelian group called the special linear group.

. The group of orthogonal matrices of order n over a field FF is the orthogonal

group
On(F) = {A € GL,(F) : ATA=1T1}.

Similarly, the special orthogonal group is the group

SO, (F) = {A € SL,(F)}.

. Let X be a set and let 2% denote the power set of X. Define addition over 2%

to be the symmetric difference A+ B = (AU B) \ (AN B), and multiplication
over 2% to be intersection AN B. The Boolean group B(X) is the additive
group (2%, +4), with @ as the zero element and with every element being its
own inverse. Also, (2%,N) is a semigroup.

. A field F is a group under addition and F* = F \ {0} is a group under multi-

plication.

The circle group S! = {z € C : |z| = 1}. One of its subgroups is the group
of n'® roots of unity U, = {# € C : 2™ = 1}. Both are cyclic groups (in fact
the term originated from the fact that U, is a subgroup of S').

The set Z of all integers is an additive abelian group under ordinary addition
(a,b) — a+0b, with identity 0 and —n being the additive inverse of each n € Z.
It is an infinite cyclic group. However, Z* is not a group under multiplication;
aside from =1 none of the elements in Z* have a multiplicative inverse.

The situation changes when we consider the integers modulo m for some pos-
itive integer m.
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12. The integers modulo m, Z,, = {0,...,m — 1}, is an abelian group under
addition but not under multiplication; however,

Z/mZ = {n € Ly, : gcd(n,m) = 1}.

so that each element is co-prime to m is indeed a group under multiplication,
called the multiplicative group of integers modulo m. These are also
examples of cyclic groups.

13. The quaternion group Qs consisting of the matrices {£1,+i, £j, £k} de-
fined as,

10\ . (i 0y . (0 1 O
(0 1) =G %)= (G a) =0 0),

i?=j?=k’=-1, ij=—ji=k,jk=—kj=iki=—-ik =},

where

is a noncommutative group of order 8.

14. The Klein 4-group K4 is the abelian group of symmetries of a rectangle which
is not a square, or the group

Ky ={e,a,b,ab}
given by the multiplication table

e a b ab
el e a b ab
al|l a e ab b
b | b ab e

ab|lab b a e

15. A symmetry of a regular n-gon is a transformation of the n-gon, so that when
the transformed n-gon is placed on the original n-gon, it exactly covers it. The
dihedral group D3, is the group of symmetries of a regular n-gon under the
operation of composition of symmetries. As the subscript suggests, a regular
n-gon has 2n symmetries so |Da,| = 2n.

Lemma 2.2

Let G be a group.
(i) Cancellation Law: If either za = b or axz = bx, then a = b.

(ii) The identity element e € G is the unique element with ea = a = ae for any
a€q.

(iii) Every a € G has a unique inverse: there is only one element a~! € G such
that aa™! = e = ata.

(iv) (aY)~"! =a for any a € G.
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Proof. (i) Either left or right multiplying by 2~! yields a = b in both cases.
(ii) Let ea = ae = a, €a=ae’ =a. Thena=a = ae=ac = e=¢.

(iii) Let xa = e, b =e. Then e = e = xa = xb = a(xa) = a(zb)

= ae = (ax)b = a = (za)b =eb=b.

(iv)a~t(a ) t=e ol w7 (et =a. O

Definition 2.16 (Centraliser and center)

Let G be a group. The centraliser C(a) of a € G is the set of elements in G that
commute with a,

Cla)={9€G:ga=ag}={g€G:gag™' =a}.

The center Z(G) (from German Zentrum) of G is the set of elements in G that
commute with every element in G,

Z(G)={9€G:gh=hgVhe G} ={g € G:ghg ' =hVheG}.

Theorem 2.7
C(a), Z(G) are subgroups of G.

Proof. ea =ae foralla € Gsoec€ Z(G). If z, y~! € Z(G) then
zhe ' =h, y thy=h
for every h € G. Thus,
zy th(zy ™) =2y thy)a = zhaT = h VR €G.
Soz, yteZ(G) = wy~!e Z(G). Thus, Z(G) is a subgroup of G.
ea = ae so e € C(a). Again, if z, y~! € C(a) then
1 1

raxr T =a,y ay=a.

Thus,

zy ta(ey ™) = 2(y lay)a”

So zy~! € C(a). Thus C(a) is a subgroup of G.

1 1

=xaxr ~ =a.

Note that g € Z(9) = g € C(A) ={g € G : ga = ag Ya € A} so center is a
subgroup of centraliser. O

§2.4 Cayley’s theorem

Notation. If a homomorphism 7 : A — B is an isomorphism, then we write A = B.
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Theorem 2.8 (Cayley's Theorem)

Every group G is isomorphic to a transformation group, i.e. a subgroup of the
symmetric group Sym G.

Proof. Recall that the symmetric group Sym G is the group of all bijections  : G —
G. Define T,, : G — G for some a € G as the map T, (z) = ax, for all x € G. Then
there exists the inverse map T, !(z) = T,-1(z) = a 'z s.t. T, }(T,(x)) = x. Thus,
T, : G — G is a bijection so that T, € Sym G Va € G. Let K = {T, : a € G}, then
K is a subgroup of Sym G.

Now consider f: G — K s.t. f(a) =T, for all a € G. Then
f(ab) = Tup(x) = (ab)z = a(bz) = To(Ty(x)) = (Ta 0 Tp)(x) = f(a)f(b).
So f is a homomorphism. Now,
fla) = f(b) = Tu(z)=Ty(x) = az=br = a=b.

So f is injective. Moreover, for every T, € K there exists a € G : f(a) = Ty. So f
is surjective, and thus f is an isomorphism so that

G =2 K, a subgroup of SymG.

§2.5 Cyclic groups

Remark. We have already seen some examples of cyclic groups, which we shall now
define:

Definition 2.17 (Cyclic group)

Let G be a group. If a € G such that G = (a) = {a”* : k € Z}, we say that G is a
cyclic group with generator a.

Theorem 2.9 (Classification of all cyclic groups)
Let G = (a). If |G| = n < oo then G = Z,. Otherwise, if |G| = oo, then G = (Z, +).

Proof. If G is finite of order n consider the map 7 : G — Z,, defined by
n(a*) = [kln, k € Z.

Then n(a?**) = [j + k|n = [j]n + [k]n = n(a?) + n(a¥). So it is a homomorphism.

Now, n(a*) = n(a?) = [j]n = [k]n so it is injective. Also for any [k], € Z, there
exists a* € G : n(a®) = [k], so it is surjective. Thus 7 is an isomorphism, therefore
G =Zy.
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If G is infinite then consider the map u: G — (Z,+) defined by
wak) =k, keZ.

Then p(a?**) = j + k = p(a?) + p(a®). So it is a homomorphism.

Now, n(a*) = n(a?) = j = k so it is injective. Also for any k € Z there
exists a¥ € G : n(a¥) = k so it is surjective. Thus 7 is an isomorphism, therefore
G=(Z,+). O

Theorem 2.10
Any subgroup of a cyclic group (a) is cyclic.

Proof. Sps G is a cyclic group with generator a, i.e., G = (a). Let H be a subgroup
of G. If H = (e) then it is the trivial group and trivially cyclic. So sps H # (e). Let
n > 0 be the least positive integer s.t. a € H. As H is a subgroup, (a") C H. If b
is an arbitrary element of H, then as b € G, we have b = a™ for some m € Z*. By
the division algorithm we can write

m=nq+r qreZ:0<r<n.

Then
b=a"1"" = (a")-a"

= a" =d" (") = d" €H.

If » > 0 then it contradicts the minimality of n. Thus r = 0, so that

As b was arbitrarily chosen, this shows that H C (a™). But (a") C H,
so H = (a"). O

§2.6 Cosets

Definition 2.18 (Left and right cosets)

For a group G and a subgroup H of G, we define a left coset of H in G to be the
set aH = {ah : h € H} for some a € G. Similarly, a right coset of H generated by
a € G is the set Ha = {ha: h € H}.

The number of distinct left cosets of H in G is called the index [G:H] of H in G.

Theorem 2.11 (Coset Properties)
Let H be a subgroup of G and a,b € G.

(i) aH=H < a€ H.
(i) aH =bH <= a 'be H.
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Proof. (i) If aH = H, then a = ae € aH = H (because e € H). For the converse,
let @ € H. As H is closed, aH C H. Now, let h € H. Then a~'h € H as H is
a subgroup of G. Then

h=eh = (aa"')h = a(a'h) € aH.

Thus H C aH, soaH = H.

(ii) aH = bH can be written as a 'bH = a~'aH = eH = H. Then applying the
above result we get what was to be shown.

O]

Theorem 2.12 (Lagrange)

The order of a subgroup H of a finite group G is a factor of the order of G. More
precisely, we have
Gl = |H|[G : H].

Proof. G finite = [G : H] finite. Set [G : H| = r. So there are r distinct left
cosets a1 H,asH, ..., a,H of H in G. Distinct left cosets are pairwise disjoint, and
h + a;h is a bijection between H and a;H. Thus,

G| = UaiH' = |a;H]
=1 =1
=Y |H| =r|H|.
=1
Thus, |G| = |H|[G : H]. 0

Corollary 2.1
If G is a finite group of prime order p, then G is cyclic.

Proof. As p > 1 there exists a # e¢ € G. Let H be the cyclic subgroup of G
generated by a. Then o(H) | o(G) =p = o(H) = 1,p. But a # e so o(H) = p.
Now H C G, |Hl=p=|G| = G = H. So G is cyclic. O

Corollary 2.2

If G is a finite group of order n, then o(a) | n and a™ = e for every a € G.

Proof. Let a € G and let m = o(a). Then a™ = e. Let H be the cyclic subgroup
of G generated by a. Then o(H) = o(a) = m. As o(H) | o(G) we have o(a) | n. So
m = o(a) = nk for some k € Z. Now a" = (a™)* = eF = e. O

Remark. Lagrange’s Theorem readily gives us the following two results from number
theory.

34



Sayan Das (June 30, 2024) Algebra

Theorem 2.13 (Fermat'’s Little Theorem)
Let p be prime and a € Z : ged(a,p) = 1. Then,

a®1=1 mod p.

Proof. Consider the multiplicative group of integers modulo p, Z/pZ, and as p is
prime we have Z/pZ = Z, \ {[0]} of order p — 1. Let a € Z : ged(a,p) = 1. Then
[a] € Z/pZ. By Corollary 2.2, we have [a]P~! = [1] = a?~! =1 (mod p). O

Definition 2.19

We define Euler’s totient function ¢(n) for an integer n € Z* with prime fac-
torisation n = plfl p§2 ophras

o(n) = pi(pr — V(o2 — 1) - pF (o — 1).

This counts the number of integers < n coprime to n.

Theorem 2.14 (Euler)
Let a,n € Z: n >0, ged(a,n) = 1. Then

a®™ =1 mod n.

Proof. For 7Z/nZ we have o(Z/nZ) = ¢(n) by definition. Let a € Z : gcd(a,n) = 1.
Then [a] € Z/nZ.
By Corollary 2.2, we have [a]?(™ = [1] = a®™ =1 (mod n). O

Theorem 2.15
Let H and K be finite subgroups of G. Then,

|H| K]
HK|=——-.
| | |H N K|

Proof. A = HNK is a subgroup of G and, in particular, H. By Lagrange’s Theorem,
o(A) | o(H). Let n = % = [H : A] = n so A has n distinct left cosets
T1A, 204, ..., znAin H. As AC K and H = |J;_, z;A, we have

=1 =l

We now show that 2; K Nz; K = @, i # j (pairwise disjoint).

KNz K # 0, i #] —= K = ;K — a:i_lxj € K. As x;lxj € H we
have z; 1:I7j € A so x;A = x;A. This contradicts our assumption that the cosets
1A, 20A, ..., x, A are distinct. So 21 K, 22K, ..., x, K are distinct left cosets of K.
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Thus, |K| = |z; K|, and we have

HK]| =

n n
=1 =1
n
|H |
= > |K|=n|K|=—|K|
2 K

_ |H||K]
|[HNK|

§2.7 Direct product

Remark. The direct product is a generalisation of the Cartesian product to groups.

Definition 2.20 (Direct product)

The (external) direct product G x H of two group G and H is the set G x H
with the operation - defined componentwise: (a,b) - (¢,d) = (a-b,c-d). This is then
associative, has the identity element (eq,eq), and (¢g~%, h~!) is the inverse for each
(g,h) € G x H. Thus, the external direct product G x H is a group.

Let G be a group and H and K subgroups of G. Then G is the internal direct
product of H and K iff

(i) G = HK.
(i) HN K = {e}.
(iii) hk = kh for all h € H and k € K.

Theorem 2.16

Let G be a group and H and K subgroups of G. Then G is the internal direct
product of H and K iff

(i) G = HK.
(ii) H,K < G.
(i) HNK = {e}.

Proof. =>: Let G be the internal direct product of H and K and let g € G, h € H.
As G = HK there exist hy € H, ki € K : g = hik;. Now, ghg™' = hikihk; 'hy! =
hihkiky*hi! (using hk = kh). Thus ghg™' = hihhi' so H < G. Similarly, we also
have K < G.

=: Let (i), (ii), (iii) hold. Then we need to show ab = ba for all a € H and b € K.
Consider aba~'b~!. Then

aba bt € a(bHV ™) CaH = H, aba b ! € (aKa )b ! C Kb! = K.

Thus aba~'b' € HNK = {¢} = ab = ba. O
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Theorem 2.17
The direct product Z x Z is not cyclic.

Proof. Assume towards a contradiction that Z x Z is cyclic with generator (n,m).
We have (0,1),(1,0) € Z x Z. Thus there exist r,s € Z :

(1,0) = r(n,m), (0,1) = s(n,m).

But rn =1 and sn = 0 imply s = 0 so that 1 = sm = 0. Absurdity. Thus, Z x Z is
not cyclic. O

Theorem 2.18
(R*,\) =R* x T, T = {+£1}.

Proof. Let a € R*. If a >0 thena =a-1 € R™T, and

if a < 0 then a = (—a) - (—=1) € RTT. So R* = R*T. Moreover, Rt N T = {1}
and ab = ba for all a € R, b € T. Thus, (R*,-) = RT x T is an internal direct
product. O

Theorem 2.19

The direct product H x K of two finite cycle groups H and K with |H| =m, |K| =n
is cyclic iff ged(m,n) = 1.

Proof. Assume that H x K is cyclic and let gcd(m,n) =d > 1. Foranya € H,b € K
we have ¢ = e and b" = e as |H| = m, |K| = n. Also ged(m,n) =d >1 =
R ¢ Z*. Now,

(a,b) € Hx K = (a,b)'d = (a’d ,b'@)
= ((a™)d,(b")7)

= (e, e).

mn

Thus, the order of every (a,b) € H x K is at most v < mn. Then H x K, a group
of order mn, contains no element of order mn, contradicting our assumption that
H x K is cyclic. Thus ged(m,n) = 1.

Assume that ged(m,n) = 1. As H and K are cyclic of order m and n, for any
a € H, b€ K we have a™ = e and b" = e. Thus,

(a,b) e Hx K = (a,b)™" = (a"",0™")
= ((@™)", (6")™)
= (e, e).

Thus, the order of every (a,b) € H x K is at most mn. Let d € Z1 : d < mn s.t.
(a,b) = (e,e). Then a? = e, b = e. As o(a) = m, o(b) = n we have m | d and
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n | d, but ged(m,n) = 1 thus d = mn and thus the order of every (a,b) € H x K is
mn = H x K is cyclic of order mn. O

§2.8 Congruences and quotient groups

Remark. We know from number theory that two integers a and b are defined to be
congruent modulo the integer m, denoted as a = b (mod m), iff a — b is a multiple of m:

a—b=km, k€Z.

The relation between a and b thus defined for fixed m is an equivalence relation; for, we
have

1. a =a (mod m). (reflexive)
2. a=0b (mod m) = b=a (mod m). (symmetric)
3. a=b (mod m), b=c (mod m) = a =c (mod m). (transitive)

These congruences (Z,,+) and (Z/mZ,-) are examples of a general notion which we
shall now define.

Definition 2.21 (Congruence relation)

Let G be a group. A congruence (relation) = in G is an equivalence relation
such that for any a,a’,b,b' : a = da’, b = b/, we have ab = d'l/. In other words,
congruences are equivalence relations which can be multiplied.

Remark. Let = be a congruence in the group G and consider the quotient set G = G/ =
of G relative to = . Note that the quotient set is the subset G C P(G) consisting of the
equivalence classes @ = {b € G : b = a}. In general, if @ = @/ and b = V/, then ab = da'b/.
Hence the map (@,b) — ab is a well-defined binary operation on G. Then (G,-) is a
group (exercise: verify!) called the quotient group of G relative to the congruence =.
For example, the quotient group Z/mZ consists of m elements:

0,£m, +2m, £3m, ...}

0], =0 =
T={1,1+m,1+2m,1+3m,...}

{
{
m—1]p,=m—-1={m—-1m—-1£mm—-1£2m,m—1+£3m,...}.

Definition 2.22 (Normal subgroup)
A subgroup K of a group G is said to be normal iff gK = Kg for all g € G. We
then write K < G.

Remark. The fundamental connection between normal subgroups of G and congruences
on G is given by the following theorem:

Theorem 2.20

Let G be a group and = a congruence on GG. Then the congruence class K = 1 of
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the identity is a normal subgroup of G and for any g € G,
g=gK =Ky,
the right or left coset of g relative to K. Conversely, let K < G, then = defined by
a=b (mod K)iffa™'be K

is a congruence relation in G whose associated congruence classes are the left (or
right) cosets gK.

Proof. Suppose that we have a congruence = on G and let K = 1. Then,
ki ky € K = kiky ' =Fiky =11 '=1 = kiky € K.
So K is a subgroup of G.

Now, let g € G and consider the congruence class g. Then,

a€eg = g la,ag ' =T1€K,

Conversely, let a € Kg. Then, @ = kg = 1g = g so a = g. Same holds for a € gK.
Thus,

Conversely, let K < G and define a = b (mod K) to mean a~'b € K, ie., b € aK.
This relation = is an equivalence relation, and if a = g (mod K) and b= h (mod K)
then for some k;’s € K we have a = gk1, b = hks and since hK = Kh we have hk3 =
k1h. Thus, ab = gkihky = ghksks so ab = gh (mod K). Thus = is a congruence
relation in G with T={k:17'k€ K} = K and g = {a: g 'a € K} = gK for any
g €aqG. O

Remark. We shall now write G/K for G = G/ = (mod K) which we call the factor
group (or quotient group) of G relative to the normal subgroup K.

Definition 2.23 (Quotient group)

Let G be a group and K < G. The quotient group G/K is defined as the group
of left cosets of the normal subgroup K in G,

G/K = {aK : a € G},

with aK - bK = abK.

Definition 2.24 (Centraliser and normaliser)

The centraliser C(A) of A C G is the set of elements in G that commute with
every element a € A,

CA)={geG:ga=agVac A} ={g€G:gag™' =aVa e A}.

The normaliser N(A) of A C G is the set of elements in G such that for every
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a € A there is some a’ € A s.t. gag~! =d/,

N(a)={geG:gAg7 = A} ={g € G:gA=Ag}).

Definition 2.25 (Conjugacy class)

The conjugacy class ccl(a) of an element a € G in a group G is the set

ccl(a) = {gag™' : g € G}.

Theorem 2.21

gHg™! is a subgroup of G for all g € G.

Proof. ¢ = geg™' € gHg™'. Let a,b € H with gag!, gbg~! € gHg '. Then
(gbg~ ')t = gb~lg~!. Then gag—tgb~lg~! = gab~lg~' € gHg™'. Thus, gHg ' is a
subgroup of G. O

Theorem 2.22

The following are equivalent:
(i) K 4G.
(ii) gKg~! C K Vg € G.
(iii) gKg~' = K Vg€ G.

Proof. (i) = (ii):

Let K I G. Let g € G. Then gK = Kg. Thus, for any k € K, gk € gK = Kg =
gk = kg for some k' € K. Thus gkg~! = k' € K. Thus, gK¢g~' C K.

(ii) = (iii):
Let k € K. Then g k(¢! € ¢7'K(g7)™! C K. Also k = g(g 'kg)g~! €
gKg~!'. So
KCyKg'CK = gKg '=K.
(iii) = (i):

Since gKg~!' = K, Vg € G we find that gK = Kg, Vg € G. Thus K < G. O
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We end this section with Cauchy’s Theorem on Finite Abelian Groups:

Theorem 2.23 (Cauchy)

Let G be a finite abelian group and p be a prime dividing |G|, then G contains an
element of order p.

Proof. We will prove this lemma by induction. If n = 1, then there is nothing to
show. Now suppose that the lemma is true for all groups of order k, where k < n.
Furthermore, let p be a prime that divides n.

If G has no proper nontrivial subgroups, then G = (a), where a is any element other
than the identity. By Exercise 4.5.39, the order of G must be prime. Since p divides
n, we know that p = n, and G contains p — 1 elements of order p.

Now suppose that G contains a nontrivial proper subgroup H. Then 1 < |H| < n.
If p | |H|, then H contains an element of order p by induction and the lemma is
true. Suppose that p does not divide the order of H. Since G is abelian, it must be
the case that H is a normal subgroup of G, and |G| = |H| - |G/H]|. Consequently, p
must divide |G/H]|. Since |G/H| < |G| = n, we know that G/H contains an element
aH of order p by the induction hypothesis. Thus,

H = (aH)? = d’H,

and a? € H but a ¢ H. If |H| = r, then p and r are relatively prime, and there exist
integers s and ¢ such that sp + tr = 1. Furthermore, the order of a? must divide r,
and (aP)" = (a")P = 1.

We claim that a” has order p. We must show that a” ## 1. Suppose a” = 1. Then

Since af € H, it must be the case that a = (a?)® € H, which is a contradiction.
Therefore, a” # 1 is an element of order p in G. O

§2.9 Homomorphisms revisited and the first isomorphism theorem

Proposition 2.2 (Homomorphism preserves identity)

Let n: A — B be a homomorphism between two groups A and B with identities e
and ¢’ respectively. Then n(e) = €'.
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Proof. We have, by definition of homomorphism,

1

and multiplying by n(e)~' we obtain n(e) = €. O

Lemma 2.3

A homomorphism between two groups 1 : A — B is a monomorphism iff ker n = {e}.

Proof. As n is homomorphism, 7(e) = e.
=

As 7 is a monomorphism, n(z) = n(e) = x = e. So kern = {e}.
—

As kern = {e}, we have n(z) =e = z = e. Now,

= n(a”"n(a) =nla)nb) = nle) =nla'b) = e=a"'b
= a=0.

So, 1 is a monomorphism. ]

Lemma 2.4

Let n: A — B be a homomorphism between two groups. Then, im7 is a subgroup
of B and kern is a normal subgroup of A, i.e. kern < A.

Proof. n(e) = e so e € imn. Let n(a), n(b) € imn.
= n(a)n(b)™" = n(a)n(b™")
=n(ab ') € imn.
Thus im 7 is a subgroup of B.

Recall that kern = {a € A : n(a) = e}. Clearly n(e) = e so e € kern. Now, let a,b €
kern = n(a) = n(b) = e. Clearly, n(b=") = n(b=")n(b) = n(b~'b) = n(e) = e, so
n(ab™') = nla)n(b™!) = e = ab~! € kern. Thus kern is a subgroup of A. Now,
fix k € kern, so n(k) = e. Let a € A. Then

n(aka™t) = n(a)n(k)n(a™") = n(a)n(a™) =e.

Thus aka™! € kern for all a € A. Thus kern < A. O

Remark. Now comes the climax of our present introduction to group theory which we
have built up to: the First Isomorphism Theorem.
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Theorem 2.24 (First Isomorphism Theorem)
Let n: A — B be a homomorphism between two groups. Then,

A/kern = imn.
In particular, if  be an epimorphism, then

A/ kern = B.

A/ kern

Proof. Let K = kern. Define ¢ : A — A/K by ¢(a) = aK. Define v : A/K — B
by ¥(aK) =n(a). If d’ K = aK then o’ = ak with k € K and

n(a’) = n(ak) = n(a)n(k) = n(a).
Thus 1 is well-defined. im ¢ = imn and

Y(aK) = P(d'K) = n(a) = n(a’)
and e = n(a)”

Thus, e = n(e) = n(a~ld) = e=a'td = a=d. So 1 is injective. It is

trivially a surjection onto im = im7 thus 1 is an isomorphism between A/ kern
and im 7. Thus,
A/kern = imn

and in particular if 7 is an epimorphism then imn = B so

A/kern = B.

Example 2.7 1. f: (Z,4) = (Zyn,+) s.t. f(i) = [¢] is onto and

fi+3) =[i+5] = [+ 5] = f) + f()-
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Then, ker f ={i € Z: f(i) = [0]}
={i€eZ:i=0 (modn)}={nk:keZ}=nZ.

Thus,
Z/nZ = L,

2. Let f: GL,(R) —» R* s.t. f(A) = det(A). Then
f(AB) = det(AB) = det(A) det(B) = f(A)f(B).

Let » € R* i.e. r # 0. Then

; 0

1
r = det _ = det(A) # 0,

0
for some A € GL,(R). Thus f is onto. ker f = SL,(R) (" f(A) = det(A) =1).
Thus

nxn

GL,(R)/SLy(R) = R*.
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§3 Group Exercises

Remark. All the theorems count as exercises too !

Problem 3.1. Show that (QF,-) = (Z[z], +).

Problem 3.2. Show that Z,, X Z, = Zp, <= ged(m,n) = 1.
Problem 3.3. Show that Z/nZ = 7Z,.

Problem 3.4. Show that GL,(R)/SL,(R) = R*.

Problem 3.5. Show that (R, +)/(Z,+) = SL.

Problem 3.6. If n: H — K is a homomorphism between two groups, a € H : o(a) = n,
then show that o(n(a)) | o(a).

Problem 3.7. Find all epimorphisms f : (Z,+) — (Z,+).
Problem 3.8. Show that Z % R.

Problem 3.9. Show that S3 22 Zg, and for every proper subgroup A of S3 there exists
a proper subgroup B of Zg such that A = B.

Problem 3.10. Show that every commutative group of order 6 is a cyclic group.

Problem 3.11 (Poincaré). Let G be a group and H, K be subgroups of G of finite
indices. Show that H N K is of finite index.

Problem 3.12. Let G be the internal direct product of H and K. Then,

G~ HxK.

§3.1 Herstein “Topics in Algebra” Problems

Problem 3.13. Without using Lagrange’s Theorem or any of its corollaries, show that
if G is a finite group, then there exists a natural number N such that oV = e for all
a€G.

Problem 3.14. Let G be a group such that intersection of all its subgroups which are
different from {e} is a subgroup different from {e}. Prove that every element in G has
finite order.

Problem 3.15. Suppose that H is a subgroup of GG such that whenever Ha # Hb then
aH # bH. Prove that gHg~' C H for all g € G.

Problem 3.16. Give an example of a group G and subgroup H such that the normaliser
N(H) and centraliser C'(H) are not the same. Is there any containment between N (H)
and C(H) ?

Problem 3.17. If H is a subgroup of G then prove that

m zHz ' <G.

zeG

Problem 3.18. If H is a subgroup of finite index in GG, then show that there is only a
finite number of distinct subgroups in G of the form aHa™".
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84 Rings

Remark. This is merely an introduction to rings, we will study ring theory in greater
depth next semester.

§4.1 Definition and elementary properties
Definition 4.1 (Ring)

A ring is a structure consisting of a non-vacuous set R together with two binary
operations +, - in R and two distinguished elements 0 € R such that

1. (R,+) is an abelian group.
2. (R,) is a semigroup.
3. The distributive laws
a) a(b+c) =ab+ ac
b) (b+c¢)a=ba+ ca
hold for all a,b,c € R.

If 1 € R (so that (R,-) becomes a monoid), then R is a ring with identity 1.
Moreover, if ab = ba for any a,b € R we say that R is a commutative ring.

We call © € R invertible or unit iff there exists v € R such that uv = vu = 1.

Example 4.1 1. The trivial ring R = {0}.

2. The ring of polynomials R[z] over a ring R defined as the set,
{apz™ + a1z™ ™ + vt ap_or? +ap_1z+an:n€ZV,a; € Ri = 0,1,...,n}.

3. The ordinary integers (Z, +, -), the integers modulo m, i.e., (Z,, +, ) for m >
0, the Gaussian integers Z[i] = {a + bi : a,b € Z, i* = —1}.

4. Examples of rings without identity include the even integers (2Z,+,-) or the
integrable functions, where f : [0,00) — R is integrable iff f is bounded and

00 t
[ 151 do= i [ )| ds <o

If f,g are integrable then so are their pointwise sum f 4 g and pointwise
product fg. The identity can only be the constant function E(x) = 1 for all
x € [0,00). But then E is not integrable, so the ring of integrable functions
does not contain an identity.

Definition 4.2

An element z of a ring R is nilpotent iff 22 = 0.
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Definition 4.3

A ring R is called a Boolean ring iff every element of R is idempotent, i.e.,

=z VreR.

Theorem 4.1
Let R be a Boolean ring. Then, for all z,y € R

1. 22 =0 and

2. zy = yx.

Proof. 1. Letz€ R,then —x € R. Sox=2°= (—z)’ = -2 = 22=0.

2. Letz,y € R. Thenz+y=(z+y)’ =2 +zy+yr+y> =z +zy+yz+y.
Then, xzy =x+y—2x —y —yxr = —yz. But yr € R so yr = —yx and thus
TY = yT.

O

Example 4.2

The power set 2% of a set X is a Boolean ring (2%, +,N) where (2%, 4) = B(X) is
the Boolean group defined with addition defined as the symmetric difference.

§4.2 Integral domains, division rings and fields

Definition 4.4 (Integral domain)

A commutative ring R with identity 1 # 0 is called an integral domain (ID) iff R
has no zero divisors.

Definition 4.5 (Division ring)
A division ring is a ring R with identity 1 # 0 such that every nonzero element of
R is a unit. In other words, division by nonzero elements is defined.

Definition 4.6 (Field)

A field is a commutative division ring.

Definition 4.7 (Characteristic)

The characteristic of a ring R is the the least positive integer n such that nr =0
for all r € R.

Theorem 4.2

The following are equivalent:
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1. R is an integral domain.

2. R is a commutative ring with identity 1 # 0 such that the Cancellation Law
holds for multiplication: ab = ac = b= cVa,b,c € R, a # 0.

Proof. Let R be an integral domain. Then a,b,c € R, a # 0, ab = ac. Then
a(b—c)=0 = b—c=0as R is an integral domain with a # 0. So b = c.

Conversely let R be a commutative ring with identity in which the Cancellation
Law holds. Let a,b € R, a # 0, ab = 0. Then ab = 0 = a - 0 implies that b = 0. So
R has no zero divisors, hence it is an integral domain. O

Theorem 4.3

Every field is an integral domain.

Proof. Let F be a field and a,b € F:a #0, ab= 0. a is a unit in F so a~! exists in
F. Thus ab=0 = b= 0. Thus F is a commutative ring with identity 1 # 0 and
admitting no zero divisors. Thus F is an integral domain. O

Remark. Converse is not true: counterexample is Z. However, any finite integral
domain is a field.

Theorem 4.4

Any finite integral domain is a field.

Proof. Let R be a finite integral domain. Suppose R = {ay,...,a,}. Let a € R\ {0},
then consider S = {aai,...,aa,}. As R is closed under multiplication, S C R. If
aa; = aa; then a; = a;j. So the elements of S are distinct. Thus |S| =n = |R|, S C
R — S =R. As 1€ R we have 1 = aa; for some j implying that a; is a unit and
since this happens for every nonzero a € R we have that R is a field. O

84.3 Subrings and subfields

Definition 4.8 (Subring)
Let R be a ring and @ # S C R. Then S is a subring of R iff

a,beS = a—b,abe S.
Definition 4.9 (Subfield)
Let F be a field and S be a subring of F. Then S is a subfield of R iff

lreS, acS\{0} = ales.

Definition 4.10 (Prime field)
A field with no proper subfields is called a prime field.
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85 Ring Exercises

Exercise 5.1. (Topics in Abstract Algebra pp. 335-338; the numbering may differ from
the textbook.)

1. Which of the following algebraic structures (R, +,+) form a ring ?
a) (Z,+,-) with a - b := max(a,b) for a,b € Z.
b) (Z,+,-) with a-b:= |alb for a,b € Z.
¢) (Z[V2],+,"), where,
(a+bV2) + (c+dV2) := (a+c)+ (b+d)V?2,
(a+bV2) - (¢ + dV?2) := (ac + 2bd) + (ad + bc)V/2,
for a,b,c,d € Z.
d) (GL,(R),+,-) with the usual matrix addition and multiplication.

2. Prove that (Z,®,®) is a commutative ring with identity if for all m,n € Z we
definem®dn:=m+n—1, mOn:=m-+n—mn.

3. Prove that (Z/2Z, +,-) is a ring with a - b = 3ab. Is there an identity in R ?
4. If R = {a,b,c,d} is a ring, where (R, +) and (R, -) are given by,

+]la b c d la b ¢ d
ala b ¢ d ala a a a
b|lb a d c bla b

clc d a b c|a c
dld ¢ b a dla b c

then complete the multiplication table of (R, ).

Is R commutative ? Does it have identity ? Prove that R satisfies 22 = z for all
T € R.

5. Let R be some subset of the set of all real-valued continuous functions on R with

(f+9)(@) = fz) +g(x), (- 9)(x) = f(z)g(x).
Verify if R is a ring when R is :
a) the set of constant functions,
the set of integer-valued functions,
the set of even integer-valued functions,
the set of twice differentiable functions having second derivative zero at z = 0,

the set of infinitely differentiable functions having first k£ derivatives zero at
xz = 0.

6. Let R be a ring. If a,b € R then prove that —(—a) = a and —(a —b) = —a +b.
7. Let R be aring. If a,b € R and m,n € Z then prove that
a) n(ab) = (na)b = a(nb),
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11.

12.

13.

14.
15.
16.

17.
18.

19.
20.
21.

22.

b) (ma)(nb) = (mn)ab,

c) n(—a) = (—n)a.

. Prove that a ring R is commutative iff (a + b)? = a? + 2ab + b? for all a,b € R.
. Prove that a ring R is commutative iff (a + b)(a — b) = a? — b* for all a,b € R.
10.

Give an example of a ring where:
a) (a+0b)%# a®+ 2ab + b2
b) (a+b)(a—b) # a® — b?.

If R is a commutative ring with identity, show that for all n € Z*

(a+b)" = zn: (Z) "k,

k=0

Let (R, +,-) be a structure and assume all the conditions of a ring are satisfied by
R except that we do not assume (R, +) to be abelian. Suppose there is an element
¢ € R such that ca =cb = a =0, i.e., ¢ can be left cancelled, for any a,b € R.
Then show that (R,+, ") is a ring.

Show that the direct product of two commutative rings with identity is a commu-
tative ring with identity.

3 = gz for all € R, then show that R is commutative.

If in a ring R we have z
Prove that every ring of order 15 is commutative.

Let H = {ap+aii+azj+ask : a, € R, r=0,1,2,3} such that ap+ari+agj+aszk =
bo+b1i+boj+bsk < a, =b, forr =0,1,2,3. Define addition and multiplication
as a formal sum and product using the relations:

==k =1, ij=—ji=k,jk=—kj=1iki=—ik=j.
Prove that H is a noncommutative ring with identity (the ring of real quater-
nions).
Prove that a ring R with identity is a Boolean ring iff a(a+b)b = 0 for all a,b € R.

Suppose m,n € Z* : m,n > 1 and ged(m,n) = 1. Prove that Z,,, has at least
four idempotent elements.

Find all idempotent elements of the rings Zg, Zsg and Z1».
Find all positive integers n for which the only idempotents of Z,, are [0] and [1].
In a ring R with identity, show that

a) a(—1) = (—=1)a= —a for all a € R,

b) if @ is a unit in R then —a is also a unit in R and (—a)~! = —a™1,

c) if ab+ba = 1 and a® = a, then a? = 1g.

Find the group of units in each of the rings: Z7, Z12, Z,; find all units of M»(Z);
prove that Z[z] and Z have the same units.
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23. In a finite ring with identity show that ab =1 = ba = 1. Hence prove that a
finite ring with prime number of elements is commutative.

24. In a ring R if there exists a unique a € R such that za = z for all z € R, prove
that ax = x.

25. In a ring with identity if > = a then show that 1 — 2a is a unit.
26. Show that the units of R[z] are nonzero constant polynomials.

27. Let R be a ring such that 1 — ab is a unit for some a,b € R. Then show that 1 — ba
is also a unit and (1 —ba)~! =1+ b(1 — ab)a.

Answer. (The numbering may differ from the textbook.)

1. a)a-(b+c) = max(a,b+ c) and ab + ac = max(a,b) + max(a,c). If we pick
c < a<b, then,

max(a,b+ c¢) = b+ ¢ # b+ a = max(a, b) + max(a,c).
For example, let a = 2,0 =3,c=1. Then
2(3+1) =max(2,3+1) =4 # 5 = max(2,3) + max(2,1).

So not a ring.

b) (b+ c)a = |b+ cla and ba + ca = (|b| + |¢[)a. But by triangle inequality,
|b+ ¢| < |b] + |c|, so that (b+ c)a # ba + ca in general. So not a ring.

c) Clearly Z [\@] is closed under + and -. + is associative and commutative as
ordinary addition is associative and commutative, and - is associative as:

(x +yV2) ((a +bV2)(c + d\ﬁ)) = (wac + 2ybd) + (zad + ybc)V2
= <($ +yvV2)(a+ b\/ﬁ)) (c+dv?2).

0 =0+ 0v2 and for every a + bv/2 there is an element —a — by/2 such that
(a+b)V2+ (—a—bV2=0,

so (Z[v2],+) is an abelian group. Also (Z [v2],-) is a semigroup, so we
need to just verify the two distributive laws,

(z +yvV2)(a+ V2 + ¢+ dV2) = (z + yV2)((a + ¢) + (b+ d)V?2)

= (z(a+¢)+2y(b+d) + (z(b+ d) + y(a + c)V2
= (za + 2yb) + (vb + ya)V2 + (zc + 2yd) + (zd + yc)v2
= (z +yV2)(a+bV2) + (z + yv2)(c + dV2),
(a+bV2+c+dV2)(z +yv2) = ((a+c) + (b+ d)V2)(z + yV?2)
= ((a+ )z +2(b+d)y) + ((b+ d)z + (a + c)y)V2
= (az + 2by) + (bx + ay)V2 + (cx + 2dy) + (dz + cy)V2
= (a+bV2)(z +yV2) + (c+ dV2)(z + yV2).
Thus, (Z [\/i] ,+,) is a ring.
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2.

5.

d) GL,(R) ={A4 € M,(R) : det(A) # 0} so clearly 0 ¢ GL,,(R).
Thus, (GLy(R),+, ) is not a ring.
Let m,n € Z, then m®n,men € Z. Alsom®&n=m+n—1=n+m—-1=ndm.
Let £ € Z. Then
te(medn) =Ld(m+n—1)=L0+(m+n—1)—1= {l+m—-1)+n—1= ({d&m)Dn.
Also
lom=mdl=m m®d2-m)=2-m)dm=1

so (Z,®) is an additive abelian group. Now,
tomon)=0l+m+n—Ltmn=(LOm)On

so (Z,®) is a semigroup. Furthermore, mGn = m+n—mn =n+m—nm =nem
S0 it is commutative. As & and @ are commutative, we need to verify only one of
the distributive laws,

Lo (mdn)

=lom+n—-1)=2+m+n—tm—_In—1={L+m—LIm)d({+n—~_In)
=({lom)e (lon).
Now, 0©m =m®0=m, so (Z,®,®) is a commutative ring with identity 0.

(Z/2Z,+) is an additive abelian group. If a,b € Z/2Z then a = 2m,b = 2n for
some m,n € Z. So, .
2
As ordinary multiplication is commutative and associative, - is also commutative
and associative. Thus (Z/2Z,-) is a semigroup and we only need to check one of
the distributive laws

a-b=—A*mn = 2mn € Z/27Z.

a ab ac

a-(b+c)= §(b+c) =5ty =a-b+a-c.
Also, 2-m =m =m-2. Thus, (Z/2Z,+,-) is a (commutative) ring with identity
2.

. From the given tables, d*> = d(b+c) = db+dc =b+c=d, cb = (b+d)b = b*+db =

b+b=a,bc=a,bd=(d+c)d=d>+cd=d+c=b,bc=blb+d) =b*>+bd=
b+b=a,and ¢* = c(b+d) = cb+ cd = a+ c = c. Thus the multiplication table
for R is:

. ‘ a b ¢ d
ala a a a
bla b a b
cla a ¢ ¢
dla b ¢ d

As the table is symmetric along its diagonal, R is a commutative ring. From the
above table clearly 22 = x for x € R, and d is the identity as zd = dz = =.

a) f R={f: R 2% R | f(z) = ¢,c € R}, then the map ¢(f) = f(zo) for some
xo € R defines an isomorphism from R to R, i.e., (R,+, ) = (R, +,) which
is a ring.
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b) Let R = {f : R conty Z}, but if f : R — Z is continuous then f must be
constant. Thus, similar to the previous case, there exists the isomorphism
¢ : R — 7Z such that ¢(f) = f(xo) for some zy € R, i.e., (R, +,-) = (Z,+,")
which is a ring.

c) Similar to the previous case, we define an isomorphism ¢ : R — 27 such that
o(f) = f(xo) for some zp € R, i.e., (R,+, ) = (2Z,+, ) which is a ring.

d) Consider f(z) = x, and g(z) = —x in R. Then the function (f - g)(z) = —2?

is continuous and twice-differentiable but (f - ¢g)”(0) = —2 # 0 so R is not
closed under pointwise multiplication.

e) In this case, f - g is in R as the first k derivatives all vanish at x = 0. So for
all j < k we have fU) = gU) =0, implying (f - g)*) # 0 for any k € Z*. So
R is closed under pointwise multiplication. The values of the functions in R
are all real, so by the properties of the real numbers the functions in R are
commutative, associative and distributive by virtue of R being a ring. So R
is a ring.
6. a€ R = 3I(—a)eR:a+(—a)=0=(—a)+ (—(—a))

subt%(fa) o= *(*CL).

Similarly,

(@a—b)+(—a+b)=0=(a—b)+(—(a—b)) = (—(a—b)) =—a+b.

7. n(ab) = (ab+---+ab) = (a+---+a)b= (na)b =a(b+---+b) = a(nb). Simi-

—_———
n times n times n times
larly,
(ma)(nb) = (a+---+a)(nb) = (a(nb) + - - - + a(nb))
ti ti
= ((ab+---+ab)) +---+ ((ab+ - - - + ab))
—_—— —_——
n times n times
m times
= (ab+--- 4 ab) = mn(ad).
|
mn times
Also,

8. Given: (a+b)? = a?+2ab+b% In general, in a ring (a+b)? = a(a+b) +b(a+b) =
a? 4+ ab+ ba + b?. So

(a+b)* = (a+ b)?
— a®>+2ab+ b* = a® + ab + ba + b?
= ab+ab=ab+ ba = ab = ba.

9. Given: (a+b)(a—b) = a®>—b%. In general, in aring (a+b)(a—b) = a(a—b)+b(a—b) =
a®? — ab+ ba — b?. So
(a+b)(a—b)=(a+Db)(a—0)
— - =d’—ab+ba—b?
— 0= —ab+ba = ab = ba.
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10. Matrix multiplication is noncommutative. So, for example, in the ring of 2 x 2 real
matrices My (R),

(A+B)? # A2+ 2AB + B?, (A+ B)(A— B) # A — B2,

11. The base cases

1 1
(a+b)t = (O) a7 + <1) a7t = a +b,

2 2 2
(a+b)? = <0>a2+ <1>ab+ <2>b2 = a® 4 2ab + V7,

hold as R is commutative. Now assume that for some n € Z* the hypothesis
(a+0)" =37y (})a™"bF holds. Then,

n

(a+b)" = (a+b)(a+b)" = (a+b) (Z <Z> a""“““)
0

k
n—1 n
= (a+D) (a” +Y ( k) a"Fr 4 b")
k=1
n—1 n
_ an+1 +a"b+ Z (k> (CL+ b)an—kbk +ab™ + bn+1
k=1
n—1 n n—1 n
_ . n+1 n+l—kik n n n—krk+1 n+1
=a +kzl<k>a b +ab™ +a b+k1(k>a b +0b

n n—1
_ an+1 + Z <Z> an—l—l—kbk + Z <Z> an—kbk—H + bn+1
k=1 k=0
n—1 n
— an+1 + Z <Z> an+17kbk + Z <k ﬁ 1) anJrlfkbk + bn+1

("5 e o () + (2 a0 )
0 P k k—1 n+1

n+1
_ Z (TL —IL— 1>an+1kbk _ (a + b)nJrl‘

k=0
Thus, proved by induction on n.

12.

(c+c)(a+Db) =cla+b)+cla+b) =ca+ cb+ ca+gb,
(c+c)a+b)=(c+c)a+ (c+c)b=ca+ca+ch+eb,
= cb+ca=ca+ch = c(b+a)=cla+b) = b+a=a+b.

Thus (R, +) is an abelian group so R is a ring.

13. Let R and S be commutative rings. R x S is an additive abelian group under
componentwise addition. Now, if r; € R, s; € S then

(r1,51)((r2, s2)(r3, 83)) = (r1,51)(r2rs, s253)
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14.

15.

= (r1(r2r3), s1(s253))
= ((r1re)rs, (s152)s3)
(7“1’!“2, 8182)(T3, 83)
= (

(7‘1, 81)(7‘2, 52))(7“3, 83).

So componentwise multiplication is associative, making R x S a semigroup under
this operation. Also as R,.S are commutative we have

(11, 51)(r2, 82) = (1172, 5182) = (r2r1, 5281) = (72, 82)(71, 51),
so R x S is commutative. Thus we need only check one distributive law:

r1,51)(re + 73, S2 + S3)
ri(ra +73),s1(s2 + s3))

(r1,81)((r2, s2) + (r3,53)) = (
= (
= (r1m2 + r173, 5152 + 5153)
= (
= (

r172, 5182) + (1173, 5153)
r1,81)(r2, $2) + (r1,51)(r3, 83).

Furthermore, R and S are rings with identity so (1,1) € R x S and

(L, 1)(r,s) = (r,s) = (r,s)(1,1).
So R x S is a commutative ring with identity.

o(R) = |R| = 15 and (R,+) is an abelian group. Thus by Cauchy’s Theorem on
Finite Abelian Groups we have

{3 | o(R) = Ja € R:o(a) =3, ab = ba gcd(o(a) o(b)) =1

5/o(R) = b€ R:0(b)=5

thus o(ab) = o(a)o(b) = 15 and R is cyclic under addition i.e. R = (¢) = {nc:n €
Z} and clearly

T Y Y T
nic-nosgCc = nNngC-nNicC.

Given 2° = x for all z € R. Thus, ab=0 = ba = (ba)? = b(ab)(ab)a = 0.
The center of the ring R is Z(R) = {c € R: cx = xzc Vz € R}.
Then, ¢* = ¢ = ¢ € Z(R) because

{c:c—czx = c(r—cx)=0 = (x—cx)c=0 = xc = cxc,

re=z2c> = (r—2c)c=0 = c(r —2c) =0 = cx = czc.

Now, forallz € R: 2% =2 = x4—x2 = x EZ(R)
Also, 2 =2c = c€ Z(R) asc=c®>=2c=c?>+ ¢ and ¢ € Z(R). Now,

(z+2?)?=(@+2})(z+2?) =22+ 22 + 2 + 2 =2 + o+ 2 + 22 =2(x + 2?),
o (z+2?%) € Z(R). Thus, for any v € R
r+a222’c R = = (z+2°) —2*c R

Thus R is commutative.
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16.

17.

18.

19.

We define addition in the real quaternions as
(ap + a1i+ a2j + ask) + (bo + bii + baj + bsk)
= ((IO + bo) + (Cll + bl)i + (CLQ + bg)J + (a3 + bg)k.

Then as real numbers are an additive abelian group, H is also an additive abelian
group under this componentwise addition.

The elements 1,1, j, k can be defined in matrix form as

() (5 ()

then the matrix form of (ag + a1i+ agj + ask) is

ag+ait  ao+ ast
—ag +azt apg—ait)

Then we can define the product of two quaternions to be the matrix multiplication
of their matrix forms,

ap+ a1t as + ast bo + b1t by + bsi
—as + a3t ag— at —by + b3t bg—b1i/)

Thus by associativity and distributivity of matrix multiplication, we have associa-
tivity and distributivity of quaternion multiplication. But matrix multiplication
is noncommutative in general, so quaternion multiplication is noncommutative in
general.

Thus H is a noncommutative ring with identity 1.
a(a + b)b = a?b + ab® = ab + ab = 2ab by property of Boolean ring. Now suppose
ala+b)b=0 = a*b+ab®* =0

set b=—1

= —®’+a=0 = a=ad>

so it is a Boolean ring.
By Chinese Remainder Theorem, if n = p* ...pp*, then
Z/nL = LIPS T x - x LJpC+ .
Thus, Z/mnZ = w X Z/nZ. So there are at least four idempotents in R of

~——
(O, [1m  [0]n;[1]n
the form,

(0,0),(0,1),(1,0), (1,1).

Z¢ = Za x Z3 so the idempotents are [0](congruent to 0 mod 2 and 3), [1](congruent
to 1 mod 2 and 3), [3](congruent to 1 mod 2 and 0 mod 3), [4](congruent to 0 mod
2 and 1 mod 3). The idempotents in Zg are only [0] and [1] as 8 has no prime
factors other than 2.

Z19 = Zyx Zg so the idempotents are [0](congruent to 0 mod 4 and 3), [1](congruent
to 1 mod 4 and 3), [4](congruent to 0 mod 4 and 1 mod 3), [9](congruent to 1 mod
4 and 0 mod 3).
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20. (Problem 21 in the textbook) If the only idempotents Z,, in are [0] and [1]

then n = p* for some prime p and k € Z+.

21. (Problem 23 in the textbook) In a ring R with identity,

a)

a(-1)+a(l)=a(-14+1)=a0=0 = a(—1)=—a
(-Da+ (1a=(-1+1)a=0a=0 = (—1)a=—a

b) a is a unit so ar = ra =1 for some r € R. Then
—ar = —ra=—1

— (~a)(~r) = (~r)(~a) = 1

1

— —r=-a! = —(a)'=—-a".

c¢) Given a® = a, ab + ba = 1. Then,

a*(ab+ba) = a*> = a®b + a®ba = a®> = ab + aaba = a*
= ab+a(lgp —ba)a=a

— ab+a® —aba’ =a

— ab(lg —a®) = 0.

Similarly, (ab+ ba)a® = a* = (1p — a*)ba = 0.

= ab(lg —a*) + (1g — a*)ba = 0

— ab — aba® 4 ba — a*ba = ab + ba — a(ab + ba)a = 0
— 1R—a2:O — azle.

22. (Problem 24 in the textbook) The units of Z,, are {[a] € Z, : gcd(a,n) = 1},

23.

so units of Z7 are {[1],...,[6]} and units of Z,2 are {[1], [5], [7], [11]}.

If A€ My(Z) then A = (ch Z) is invertible iff det(A) # 0, then

A= detl(A) (—dc _ab)

which has integer entries iff det(A) = £1. So the units of M»(Z) are {A € M(Z) :
det(A) = £1}.

If fg = 1in Z[x] then fg is a nonzero constant polynomial, so f, g must be nonzero
constant polynomials, so there must exist nonzero integers a,b € Z : f = a,g =10
with ab = £1. So the units of Z[x] are {—1,+41} which is the same as the units of
7.

(Problem 26 (a) in the textbook) ab = 1. Let R = {ai,...,a,}, S =
{bay,...,ba,}. Then,

ba; = ba; = aba; = aba; = a; = a;
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24.

25.

26.

27.

thus S| = |R| but S C Rso S = R. Now,
ba; =1 = aba; =a = a; = a.

Thus, ba = 1.

(Problem 26 (c) in the textbook) If o(R) = p prime then due to R being an
additive abelian group we have by Cauchy’s Theorem on Finite Abelian Groups
that R is cyclic and generated by 1. Thus, R is commutative.

(Problem 27 in the textbook) Let r € R be arbitrary. Then z(ar —r +a) =
xar —xr + xa = z for all x € R. But a is unique, so ar —r+a=a — ar =r.
As r was arbitrary we are done.

(Problem 28 in the textbook) Required to show: z(1 — 2a) = (1 — 2a)x = 1.
(1-2a)=1-4da+4a’>=1asa*=a

thus (1 — 2a) = 1, and in a Boolean ring, taking x = 1 we have z1 = 1l = 1.

(Problem 29 in the textbook) Let fg =1 = fg is a constant (nonzero) poly-
nomial i.e. of degree 0. Then, deg(f)deg(g) < 0 so that f, g are constant nonzero
polynomials. Thus the units of R[] is the ring of constant nonzero polynomials

(Problem 32 in the textbook) Let ¢ = (1 — ab)~!. Then expanding as a geo-
metric series,

(1 —ba)~t = 1+ ba + baba + bababa + . . .
=14+0b(14+ab+abab+...)a
= 1+ bca.

Verifying,

(1 —ba)(1+ bca) = 1 — ba + bea — babea
=1—ba+b(c—abc)a=1—ba+b(l—ab)ca
=1—-ba+ba=1.
So indeed (1 —ba)~' =1+bca =1+ b(1 — ab) a.

Exercise 5.2. Problems on subrings and subfields.

. Let

A={aeC: f(a)=0, f e Q[z], deg(f) € Z>o}

denote the set of algebraic numbers i.e. complex numbers satisfying some poly-
nomial equation with rational coefficients. Show that A is a subfield of C.

. Prove that the characteristic of an integral domain is either prime or zero. In

particular, prove that the characteristic of a field is either prime or zero.

. Prove that the only prime fields are Z;, (p = 1 or prime) and Q.
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§6 Exam Papers

§6.1 2024

1.

a)

Define a group. Let Z, be the set of all integers modulo some integer n > 1.
Show that Z, is not a group under multiplication whereas Z/nZ = {i € Z, :
ged(n,i) = 1} is a group under multiplication.

Let g be a group and a,b € G such that a? = e and ab*a = b7 where e is the
identity. Prove that b33 = e.

Define a subgroup of a group G. Show that C(a) = {g € G : ag = ga} is a
subgroup of G for all a € G.

Prove that every infinite group has an infinite number of subgroups.

Let o, 8,7 € Sg such that « = (1238), 8 =(358), and v =(13)(47). Let
x = o3B72+. Find the order of € Sg.

Define a cyclic group. Prove that every subgroup of a cyclic group is cyclic.

Let G be a group, H be a subgroup of G and a,b € G. Prove that aH = bH
iff a='bc H.

Define a normal subgroup of a group G. Let H be a proper subgroup of G
such that for all z,y € G\ H, xy € H. Prove that H < G.

Define the kernel of a homomorphism (of groups). Let G be a group and
H < G. Then show that there exists an onto homomorphism f : G — G/H
such that ker f = H.

Show that the mapping f : (Z x Z,+) — (Z,+) defined by f((a,b)) =a —b
is a homomorphism. Find ker f.

Show that (Q,+) and (Q*,-) are not isomorphic groups.

Show that every group is isomorphic to some subgroup of the group of all
permutations of some set.
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§6.2 2023

1.

a)

b)

Define a group. Let G be a finite group and a,b € G such that b # a, a® = e,
and aba~!' = b?. Find the order of b.

Define a subgroup of a group G. Let H be a subgroup of G. Show that for
any g € G,
K=gHg ' ={ghg™':hc H}

is a subgroup of G and |K| = |H]|.
In Sy let a(2374)(15)a"t=(4632)(57). Find a.

Define the alternating group A,. Let H < As such that H contains a 3—cycle.
Show that H = As.

Let G be a finite group of non-prime order n > 1. Show that G has a subgroup
other than {e} and G.

Let G be a group with a finite number of subgroups. Show that G is finite.
Define a cyclic group. Prove that every subgroup of a cyclic group is cyclic.
Let G be a nontrivial cyclic group. Show that G x G is not cyclic.

Let G be a group, H be a subgroup of GG. Define the left coset aH of H in G for
any a € G. Prove that aH = H <= a € H and aH =bH <= a 'bc H
for any a,b € G.

Define a normal subgroup of a group G. Let H be a subgroup of G such that
for all aba='b~! € H, Va,b € G. Prove that H < G.

Define the homomorphism of groups. Let G be a group and H < G. Prove
that there exists an onto homomorphism ¢ : G — G/H such that H = ker .

Show that GL,(R)/SL,(R) = R* for integer n > 1.

60



	Classical Algebra
	Theory of equations
	The Fundamental Theorem of Algebra
	Descartes' rule of signs
	Transformation of Equations
	Cubics
	Quartics
	Exercises

	Inequalities

	Groups
	Definitions and motivation
	Permutations
	Abstract groups
	Cayley's theorem
	Cyclic groups
	Cosets
	Direct product
	Congruences and quotient groups
	Homomorphisms revisited and the first isomorphism theorem

	Group Exercises
	Herstein ``Topics in Algebra'' Problems

	Rings
	Definition and elementary properties
	Integral domains, division rings and fields
	Subrings and subfields

	Ring Exercises
	Exam Papers
	2024
	2023


