BACHELOR OF SCIENCE EXAMINATION, 2024

(1st Year, 1st Semester)

MATHEMATICS

PAPER: MAJOR - 101

(Real Analysis)

Time: 2 Hours

Full Marks: 40

Use a separate Answer-Script for each Part.

PART—I

(Marks: 20)

Answer any five questions:

 $(4 \times 5 = 20)$

1. Show that the set [0, 1] is uncountable.

- 4
- 2. Let F be an Archimedean ordered field. Show that if F satisfies least upper bound property then F has Cantor's nested interval property.
- 3. Show that interior of a set is the largest open set contained in the set. Find the derived set of \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{Q}^c . 2+2

- 4. Prove that in \mathbb{R} finite intersection of open sets is open. Give an example to show that arbitrary intersection of open sets may not be open.
- 5. Find the closure of the set $\{m + n\sqrt{2} : m, n \in \mathbb{Z}\}$.
- 6. Prove that every closed and bounded set in \mathbb{R} is compact.
- 7. Show that an element x_0 is a limit point of a set S if and only if there exists a sequence $\{x_n\}$ of elements from $S\setminus\{x_0\}$ converging to x_0 .
- 8. Prove that the set $S = \{x \in \mathbb{Q} : 2 < x^2 < 3\}$ is both closed and open in \mathbb{Q} . Justify whether the set S is compact or not.

2+2

3+2

PART—II

(Marks: 20)

Answer any four questions:

- 1. (a) If the subsequences $\{x_{3n-2}\}$, $\{x_{3n-1}\}$ and $\{x_{3n}\}$ of a sequence $\{x_n\}$ converge to the same limit ℓ , then prove that $\{x_n\}$ converges to ℓ .
 - (b) Prove that $n^{1/n} \to 1$ as $n \to \infty$

- 2. Define nests of intervals. For any nest of closed intervals $\{[a_n, b_n]\}$, prove that there exists a unique real number x such that $x \in [a_n, b_n] \forall n$.
- 3. Prove that $\left\{ \left(1 + \frac{1}{n}\right)^n \right\}$ is convergent and

$$\frac{2 \leq \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n}{2 < \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n < 3,$$

- 4. (a) Prove that the sequence $\{u_n\}$ defined by $u_1 = \sqrt{7}$ and $u_{n+1} = \sqrt{7}u_n \forall n \ge 1$, converges to 7.
 - (b) If $\{x_n\}$ is a bounded sequence and $\{y_n\}$ converges to 0, then prove that $\{x_ny_n\}$ converges to 0.
- 5. (a) Let $\sum u_n$ and $\sum v_n$ be two series of positive real numbers and $\lim_{n\to\infty}\frac{u_n}{v_n}=\ell$. If $\ell\neq 0$, then prove that $\sum u_n$ and $\sum v_n$ converge or diverge together.
 - (b) If $\sum u_n$ is a convergent series of positive real numbers, then prove that $\sum \frac{u_n}{s+u_n}$ is convergent for any non-zero real number s>0.

6. (a) Test the convergence of the following series:

$$\sum \frac{a^n}{n}, \ a > 0$$

(b) Test the convergence of the following series:

$$\frac{1+2}{2^3} + \frac{1+2+3}{3^3} + \frac{1+2+3+4}{4^3} + \cdots$$
 [3+2]

- 7. Let $\sum a_n$ be a convergent series of positive real numbers.
 - (i) Prove that the sequence of *n*th partial sum of the series is bounded above.
 - (ii) If $\{a_n\}$ is monotonically decreasing sequence, then prove that $na_n \to 0$ as $n \to \alpha$. [2+3]

Ex/SC/MATH/UG/MAJOR/TH/12/104/2024

BACHELOR OF SCIENCE EXAMINATION, 2024

(1st Year, 2nd Semester)

MATHEMATICS

PAPER: MAJOR - 104

(Theory of Real Functions)

Time: Two Hours

Full Marks: 40

Use separate sheet for each Part.

Symbols and notations have their usual meanings.

PART—I (Marks: 20)

Answer any four questions.

- 1. (i) Let $f: \mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} and $f(x_0) > c$ for some x_0 in \mathbb{R} . Then show that there exists a $\delta > 0$ such that $f(x) > c \ \forall x \in (x_0 \delta, x_0 + \delta)$.
 - (ii) Let $S = \{x \in \mathbb{R} : e^x + \sin x > 1\}$. Justify whether S is open in \mathbb{R} or not?
- 2. (i) Let $f:(a,b) \to \mathbb{R}$ be continuous. Then show that f is uniformly continuous iff $\lim_{x \to a+} f(x)$ and $\lim_{x \to b-} f(x)$ exist finitely.

MATH-808

- (ii) Hence or otherwise show that $f:(0,1) \to \mathbb{R}$ defined by f(x) = 1/x is not uniformly continuous. 4+1
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f satisfies Cauchy functional equation

$$f(x+y) = f(x) + f(y) \ \forall x, y \in R$$

If f is continuous at a point $x_0 \in \mathbb{R}$, then show that f is continuous on \mathbb{R} and there exists a constant c in \mathbb{R} such that

$$f(x) = cx \ \forall x \in \mathbb{R}$$

4. Let $X, Y \subset \mathbb{R}$ and $f: X \to Y$ be a function which is invertible. Let $x_0 \in X$ and $f(x_0) = y_0$. If f is differentiable at x_0 and f^{-1} is continuous at y_0 , $f'(x_0) \neq 0$, then prove that f^{-1} is differentiable at y_0 and

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

- 5. Let $f:[a,b] \to \mathbb{R}$ be a function such that f is differentiable at every point of [a,b]. If $f'(a) < \gamma < f'(b)$, then show that there exists $c \in (a,b)$ such that $f'(c) = \gamma$. Hence or otherwise show that if f is differentiable on [a,b], then f' cannot have any simple discontinuities.
- 6. (i) Show that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

(ii) Find the differential of the function $f(x) = x^3$ at the point x = 3.

PART—II (Marks: 20)

Answer the following questions.

1. [CO-1]:

State and prove Taylor's theorem with Cauchy's form of remainder.

(OR)

Find Lt
$$(\cos x)^{\cot^2 x}$$

Show that
$$\int_{0}^{\frac{\pi}{2}} \cos^{n} x \cos nx \, dx = \frac{\pi}{2^{n+1}} (n \in \mathbb{Z}_{+}). \qquad 2\frac{1}{2} + 2\frac{1}{2}$$

2. [CO-3]:

Define convex function.

If a, b, c > 0 and a + b + c = 1, then find the minimum value

of
$$\left(a + \frac{1}{a}\right)^{10} + \left(b + \frac{1}{b}\right)^{10} + \left(c + \frac{1}{c}\right)^{10}$$
. 1+4

(OR)

Let I be an open interval and $f: I \to \mathbb{R}$ be such that f''(x) exists on I. Then prove that f is a convex on I iff $f''(x) \ge 0 \ \forall x \in \mathbb{I}$.

MATH-808

[Turn Over]

(a) If $y = e^{a \sin^{-1} x}$, then show that

$$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + a^2)y_n = 0$$

Find y_n (*n* even) when $x = 0$.

(b) Find all the asymptotes of the curve

$$(x+y)^2(x+2y+2)-x-9y+2=0$$

(c) Find the volume of the solid obtained by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line.

