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§1 Limits and Continuity
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1

LIMIT AND CONTINUITY

PROF KALLOL PAUL

1. Limit

Definition 1.1. (Limit Point/Cluster Point)

Let A ⊆ R. A point c ∈ R is a limit point (cluster point) of A if for every δ > 0 there exists at least

one point x ∈ A, x 6= c such that |x− c| < δ.

Theorem 1.2. A number c ∈ R is a limit point of a subset A of R if and only if there exists a

sequence {an} in A such that lim
n→∞

{an} = c and an 6= c for all n ∈ N.

Definition 1.3. (Limit of a function at a point)

Let A(6= ∅) ⊆ R and c be a limit point of A. Then a function f : A → R, is said to have a limit at

c, if there exists a fixed real number L such that for any given real number ε > 0, there exists a real

number δ > 0 (depending on both ε and the point c) such that

|f(x)− L| < ε whenever |x− c| < δ and x ∈ A.
We often write it as

lim
x→c

f(x) = L.

Example 1.4. Let f : (0, 2) −→ R be defined by

f(x) = 0, x < 1

= 1, 1 ≥ x < 2

−1 1 2 3
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For any δ > 0, there exists x1 ∈ (1 − δ, 1 + δ) such that x1 < 1 and so f(x1) = 0. So if we take

0 < ε < 1, then |x− 1| < δ 6⇒ |f(x)− 1| < ε. Hence 1 is not the limit of f at 1.

Note that if we take ε > 1, then there exists δ > 0 such that |x− 1| < δ ⇒ |f(x)− 1| < ε.

1For any further readings please see books by Rudin, Apostol or Bartle and Scherbert.
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Limit and Continuity

Next, we give an example, for which there does not exist any δ > 0, for any ε > 0 such that

|x− c| < δ ⇒ |f(x)− L| < ε.

Example 1.5. Let f : (0,∞) −→ R be defined by

f(x) = 0, x = 0

=
1

x
, x > 0.
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We check whether 0 is a limit of f at 0 or not. Let ε > 0. If possible let there exist a δ > 0 such that

|x − 0| < δ ⇒ |f(x) − 0| < ε. By Archimedean property of R, there exists n0 ∈ N such that δ > 1
n0
.

Let n > max{n0, ε}, then 1
n ∈ (0, δ) but f( 1

n ) = n > ε, which is a contradiction. Thus for any ε > 0

there does not exist any δ > 0 such that |x− 0| < δ ⇒ |f(x)− 0| < ε.

Next, we give an example, where for each δ > 0, there exists ε > 0, such that |x − c| < δ ⇒
|f(x)− l| < ε, but the limit does not exist.

Example 1.6. Let f : [0, 2] −→ R be defined by

f(x) = x, x ≤ 1

= x− 1, 1 < x ≤ 2

−1 1 2 3
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Here for each δ > 0, there exists ε ( take ε ≥ 1 ) such that |x− 1| < δ ⇒ |f(x)− 1| < ε. But for ε < 1,

there does not exists δ > 0, such that |x − 1| < δ ⇒ |f(x) − 1| < ε. So at x = 1, the function f(x)

does not have a limit.

Theorem 1.7. Let A ⊆ R, let f : A → R and let c be a limit point of A. Then f can have only one

limit at c.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024
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Limit and Continuity

Proof. Let L,L′ ∈ R be the two limits of f at c. Now for given any ε > 0, there exists δ > 0 such that

|f(x)−L| < ε
2 whenever 0 < |x− c| < δ and x ∈ A. Also there exists δ′ > 0 such that |f(x)−L′| < ε

2

whenever 0 < |x − c| < δ′ and x ∈ A. Let δ0 := min{δ, δ′}. Then if x ∈ A and 0 < |x − c| < δ0, the

Triangle Inequality implies that

|L− L′| = |L− f(x) + f(x)− L′| ≤ |L− f(x)|+ |f(x)− L′| < ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we conclude that L − L′ = 0, i.e., L = L′. This complete the proof of the

theorem. �

Theorem 1.8. Let A ⊆ R, let f : A→ R and let c be a limit point of A. Then the following statements

are equivalent:

(i) lim
x→c

f(x) = L.

(ii) For every sequence {xn} in A that converges to c such that xn 6= c for all n ∈ N, the sequence

{f(xn)} converges to L.

Proof. (i) ⇒ (ii). Assume f has limit L at c and suppose {xn} is a sequence in A with lim
n→∞

xn = c

and xn 6= c for all n ∈ N. Here, we prove that the sequence {f(xn)} converges to L.

Let ε > 0 be given. Then by the definition of limit, there exists δ > 0 such that |f(x) − L| < ε

whenever 0 < |x− c| < δ and x ∈ A. Now we apply the definition of convergent sequence for the given

δ > 0 to obtain a natural number K(δ) such that if n > K(δ) then |xn− c| < δ. But for each such xn,

we have |f(xn) − L| < ε. Thus if n > K(δ), then |f(xn) − L| < ε. Therefore, the sequence {f(xn)}
converges to L.

(ii) ⇒ (i). If possible, suppose that (i) is not true. Then there exists an ε > 0 such that for every

δ > 0 there exists a point x ∈ A, with x 6= c, for which |f(x)−L| ≥ ε and 0 < |x− c| < δ. Let we take

δ = 1
n . Then for each positive integer n, there exists xn ∈ A, with xn 6= c, such that |f(xn)− L| ≥ ε

and |xn − c| < δ = 1
n .

Thus, we get a sequence {xn} in A \ {c} with xn → c as n → ∞, whereas f(xn) 6→ L as n → ∞.
Therefore we have shown that if (i) is not true, then (ii) is not true. Thus we conclude that (ii)

implies (i). �

Divergence criteria:

Let A ⊆ R, let f : A→ R and let c be a limit point of A.

(a) If L ∈ R, then f does not have limit L at c if and only if there exists a sequence {xn} in A with

xn 6= c for all n ∈ N such that the sequence {xn} converges to c but the sequence {f(xn)} does not

converge to L.

(b) The function f does not have a limit at c if and only if there exists a sequence {xn} in A with

xn 6= c for all n ∈ N such that the sequence {xn} converges to c but the sequence {f(xn)} does not

converge in R.

Example 1.9. lim
x→0

sin( 1
x ) does not exist in R.

Let f(x) = sin( 1
x ) for x 6= 0. Now, consider two sequences {xn} := { 1

nπ} and {yn} :=
{

2
(4n+1)π

}

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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Limit and Continuity

for n ∈ N. Then lim
n→∞

xn = 0 and lim
n→∞

yn = 0. Now, f(xn) = sin(nπ) = 0 for all n ∈ N, so that

lim
n→∞

f(xn) = 0. On the other hand f(yn) = sin
(

(4n+1)π
2

)
= 1 for all n ∈ N, so that lim

n→∞
f(yn) = 1.

So, we conclude that lim
x→0

sin( 1
x ) does not exist in R.

x

sin(1/x)

-1 -0.5 0.5 1

Example 1.10. lim
x→0

1
x does not exist in R.

Let f(x) = 1
x for x 6= 0. Now, consider the sequence {xn} := { 1n} for n ∈ N. Then lim

n→∞
xn = 0,

but f(xn) = n, which is not convergent in R. So, form condition (b) lim
x→0

1
x does not exist in R.

−1 −0.5 0.5 1

−100

100
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Definition 1.11. Let A ⊆ R, let f : A→ R and let c be a limit point of A. We say that f is bounded

on a neighborhood of c if there exists a δ-neighborhood Vδ(c) := {x ∈ R : |x − c| < δ} of c and a

constant M > 0 such that |f(x)| ≤M for all x ∈ A ∩ Vδ(c).

Theorem 1.12. If A ⊆ R and f : A→ R has a limit at c ∈ R, then f is bounded on some neighborhood

of c.

Proof. Let lim
x→c

f(x) = L. Then for ε = 1, there exists δ > 0 such that |f(x) − L| < 1 whenever

0 < |x− c| < δ and x ∈ A. Hence, we have |f(x)| − |L| ≤ |f(x)− L| < 1. Therefore, if x ∈ A ∩ Vδ(c),
x 6= c, then |f(x)| < |L|+1. If c 6∈ A, we take M = |L|+1. If c ∈ A, we take M = max{|f(c)|, |L|+1}.
It follows that if x ∈ A ∩ Vδ(c), then |f(x)| ≤M. This shows that f is bounded on the neighborhood

of Vδ(c) of c. �

Definition 1.13. Let A ⊆ R and let f and g be functions defined on A to R. We define the sum

f + g, the difference f − g, and the product fg on A to R to be the functions given by

(f + g)(x) := f(x) + g(x), (f − g)(x) := f(x)− g(x),

(fg)(x) := f(x)g(x),

for all x ∈ A. Further, if b ∈ R, we define the multiple bf to be the function given by

(bf)(x) := bf(x) for all x ∈ A.
Finally, if h(x) 6= 0 for all x ∈ A, we define the quotient f

h to be the function given by

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024
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Limit and Continuity

(
f
h

)
(x) := f(x)

g(x) for all x ∈ A.

Theorem 1.14. Let A ⊆ R, let f and g be functions on A to R and let c ∈ R be a limit point of A.

Further let b ∈ R.
(a) If lim

x→c
f(x) = L and lim

x→c
g(x) = M, then:

lim
x→c

(f + g)(x) = L+M, lim
x→c

(f − g)(x) = L−M,

lim
x→c

(fg)(x) = LM, lim
x→c

(bf)(x) = bL.

(b) Let h : A→ R and let h(x) 6== 0 for all x ∈ A. If lim
x→c

h(x) = H 6= 0, then

lim
x→c

(
f
h

)
(x) = L

H .

Theorem 1.15. (Squeeze Theorem)

Let A ⊆ R, let f, g, h : A→ R and let c be a limit point of A. Also let

f(x) ≤ g(x) ≤ h(x) for all x ∈ A, x 6= c.

If lim
x→c

f(x) = L = lim
x→c

h(x), then lim
x→c

g(x) = L.

Proof. To prove this theorem we use the following results of sequence of real numbers:

Let {xn} and {yn} be two convergent sequence of real numbers. If xn ≤ yn for all n ∈ N, then

lim
n→∞

xn ≤ lim
n→∞

yn.

Let {xn} be any sequence of real numbers such that c 6= xn ∈ A for all n ∈ N. If the sequence {xn}
converges to c, then by sequential criterion of limit and the above mentioned result we have

L = lim
n→∞

f(xn) ≤ lim
n→∞

g(xn) ≤ lim
n→∞

h(xn) = L.

Therefore lim
n→∞

g(xn) = L = lim
x→c

g(x). �

Theorem 1.16. Let A ⊆ R, let f : A→ R and let c be a limit point of A. If

lim
x→c

f(x) > 0
[
respectively, lim

x→c
f(x) < 0

]
,

then there exists a neighborhood Vδ(c) of c such that f(x) > 0 [respectively, f(x) < 0] for all x ∈
A ∩ Vδ(c), x 6= c.

Proof. Let lim
x→c

f(x) = L and let L > 0. We take ε = L
2 > 0. Then there exists δ > 0 such that

|f(x) − L| < L
2 , whenever 0 < |x − c| < δ. Therefore it follows that if x ∈ A ∩ Vδ(c), x 6= c, then

f(x) > L
2 > 0.

If L < 0, a similar arguments applies. �

One-sided Limits

Definition 1.17. Let A ⊆ R and let f : A→ R.
(i) If c ∈ R is a limit point of the set A ∩ (c,∞) = {x ∈ A : x > c}, then we say that L ∈ R is

right-hand limit of f at c and we write

lim
x→c+

f(x) = L

if given any ε > 0 there exists δ > 0 (depending on ε and the point c) such that for all x ∈ A with

0 < x− c < δ, then |f(x)− L| < ε.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024
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Limit and Continuity

(ii) If c ∈ R is a limit point of the set A ∩ (−∞, c) = {x ∈ A : x < c}, then we say that L ∈ R is

left-hand limit of f at c and we write

lim
x→c−

f(x) = L

if given any ε > 0 there exists δ > 0 (depending on ε and the point c) such that for all x ∈ A with

0 < c− x < δ, then |f(x)− L| < ε.

Theorem 1.18. Let A ⊆ R, let f : A→ R and let c be a limit point of A∩ (c,∞). Then the following

statements are equivalent:

(i) lim
x→c+

f(x) = L.

(ii) For every sequence {xn} in A that converges to c such that xn > c for all n ∈ N, the sequence

{f(xn)} converges to L.

Theorem 1.19. Let A ⊆ R, let f : A→ R and let c be a limit point of A∩(−∞, c). Then the following

statements are equivalent:

(i) lim
x→c−

f(x) = L.

(ii) For every sequence {xn} in A that converges to c such that xn < c for all n ∈ N, the sequence

{f(xn)} converges to L.

Theorem 1.20. Let A ⊆ R, let f : A → R and let c be a limit point of both the sets A ∩ (c,∞) and

A ∩ (−∞, c). Then lim
x→c

f(x) = L if and only if lim
x→c−

f(x) = L = lim
x→c−

f(x).

Infinite Limits

Definition 1.21. Let A ⊆ R, let f : A→ R and let c be a limit point of A.

(i) We say that f tends to ∞ as x→ c, and write

lim
x→c

f(x) =∞

if for every α ∈ R there exists δ > 0 (depending on α) such that for all x ∈ A with 0 < |x − c| < δ,

then f(x) > α.

(ii) We say that f tends to −∞ as x→ c, and write

lim
x→c

f(x) = −∞

if for every β ∈ R there exists δ > 0 (depending on β) such that for all x ∈ A with 0 < |x − c| < δ,

then f(x) < β.

Theorem 1.22. Let A ⊆ R, let f, g : A→ R and let c be a limit point of A. Suppose that f(x) ≤ g(x)

for all x ∈ A, x 6= c.

(a) If lim
x→c

f(x) =∞, then lim
x→c

g(x) =∞.
(b) If lim

x→c
g(x) = −∞, then lim

x→c
f(x) = −∞.

Proof. (a) If lim
x→c

f(x) = ∞ and α ∈ R is given, then there exists δ > 0 (depending on α) such that

for all x ∈ A with 0 < |x − c| < δ, then f(x) > α. Since f(x) ≤ g(x) for all x ∈ A, x 6= c, it follows

that if 0 < |x− c| < δ and x ∈ A, then g(x) > α. Therefore lim
x→c

g(x) =∞.
The proof of (b) is similar. �

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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Limit and Continuity

Limits at Infinity

Definition 1.23. Let A ⊆ R and let f : A → R. Suppose that (a,∞) ⊆ A for some a ∈ R. We say

that L ∈ R is a limit of f as x→∞, and write

lim
x→∞

f(x) = L,

if given any ε > 0 there exists K > a (depending on ε) such that for any x > K, then |f(x)− L| < ε.

Theorem 1.24. Let A ⊆ R, let f : A → R and let (a,∞) ⊆ A for some a ∈ R. Then the following

statements are equivalent:

(i) lim
x→∞

f(x) = L.

(ii) For every sequence {xn} in A ∩ (a,∞) such that lim
n→∞

(xn) =∞, the sequence {f(xn)} converges

to L.

Definition 1.25. Let A ⊆ R and let f : A → R. Suppose that (a,∞) ⊆ A for some a ∈ R. We say

that f tends to ∞ [respectively −∞] as x→∞, and write

lim
x→∞

f(x) =∞,
[
respectively lim

x→∞
f(x) = −∞

]

if given any α ∈ R there exists K > a (depending on α) such that for any x > K, then f(x) > α

[respectively f(x) < α].

Theorem 1.26. Let A ⊆ R, let f : A → R and let (a,∞) ⊆ A for some a ∈ R. Then the following

statements are equivalent:

(i) lim
x→∞

f(x) =∞, [respectively lim
x→∞

f(x) = −∞].

(ii) For every sequence {xn} in (a,∞) such that lim
n→∞

(xn) = ∞, then lim
n→∞

f(xn) = ∞ [respectively,

lim
n→∞

f(xn) = −∞].

Theorem 1.27. Let A ⊆ R, let f, g : A → R and let (a,∞) ⊆ A for some a ∈ R. Suppose further

that g(x) > 0 for all x > a and that for some L ∈ R, L 6= 0, we have

lim
x→∞

f(x)

g(x)
= L.

(i) If L > 0, then lim
x→∞

f(x) =∞ if and only if lim
x→∞

g(x) =∞.
(ii) If L < 0, then lim

x→∞
f(x) = −∞ if and only if lim

x→∞
g(x) = −∞.

Proof. (i) Since L > 0, the hypothesis implies that there exists a1 > a such that

0 <
1

2
L ≤ f(x)

g(x)
<

3

2
L forx > a1.

Therefore we have ( 1
2L)g(x) < f(x) < ( 3

2L)g(x) for all x > a1, from which the conclusion follows

readily.

The proof of (ii) is similar. �

2. Continuity

Definition 2.1. (Continuity of a function at a point)

Let A ⊆ R, let f : A→ R and let c ∈ A. Then f is said to be continuous at c if given any real number

ε > 0 there exists a real number δ > 0 (depending on both ε and the point c) such that

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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Limit and Continuity

|f(x)− f(c)| < ε whenever |x− c| < δ and x ∈ A.
In terms of limit notion it means

lim
x→c

f(x) = f(c).

Note.

• Let f : [a, b] → R and let c ∈ (a, b). Then f is said to be continuous at c if given any real

number ε > 0 there exists a real number δ > 0 (depending on both ε and the point c) such

that

|f(x)− f(c)| < ε whenever |x− c| < δ and x ∈ [a, b].

• Let f : [a, b] → R. Then f is said to be continuous at a if given any real number ε > 0 there

exists a real number δ > 0 (depending on both ε and the point a) such that

|f(x)− f(a)| < ε whenever |x− a| < δ and x ∈ [a, b].

In terms of limit notion it means

lim
x→a+

f(x) = f(a).

Similarly, f is said to be continuous at b if given any real number ε > 0 there exists a real

number δ > 0 (depending on both ε and the point b) such that

|f(x)− f(b)| < ε whenever |x− b| < δ and x ∈ [a, b].

In terms of limit notion it means

lim
x→b−

f(x) = f(b).

Definition 2.2. Let A ⊆ R and let f : A→ R. Then f is said to be continuous on A if and only if f

is continuous at each point of A.

Theorem 2.3. Composition of two continuous functions is continuous.

Proof. Let f : A→ B and g : B → C be two continuous functions where f(A) ⊆ B. We want to show

g ◦ f : A→ C is also continuous on A.

Let x0 ∈ A be an arbitrary point. Let ε > 0 be any given real number. Then f is continuous at x0

and g is continuous at f(x0) ∈ B. So for ε > 0 there exists a real number δ1 > 0 (depending on ε and

f(x0) ) such that

|g(y)− g(f(x0))| < ε whenever |y − f(x0)| < δ1 and y ∈ B. . . . . . . (1)

Let ε
′

= δ1. Since f is continuous at x0, then for ε
′
> 0 there exists a real number δ > 0 (depending

on ε
′

and x0) such that

|f(x)− f(x0)| < ε
′

whenever |x− x0| < δ and x ∈ A. . . . . . . . . . (2)

Since f(A) ⊆ B, combining (1) and (2) it follows that

|g(f(x))− g(f(x0))| < ε whenever |x− x0| < δ and x ∈ A.

⇒ |(g ◦ f)(x)− (g ◦ f)(x0)| < ε whenever |x− x0| < δ and x ∈ A.
Therefore g ◦ f : A → C is continuous at x0 ∈ A. Since x0 ∈ A is arbitrary point, g ◦ f : A → C is

continuous on A. Thus composition of two continuous functions is continuous. �
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Theorem 2.4. Let A ⊆ R and f : A → R. Then f is continuous at a point c ∈ A if and only if for

every sequence {xn}, xn ∈ A with xn → c as n→∞, we get the sequence {f(xn)} converging to f(c).

Proof. Suppose f is continuous at c ∈ A. Let {xn} be a sequence converging to the point c, where

xn ∈ A, for each n ∈ N. We show that f(xn) → f(c) as n → ∞.. Let ε > 0 be an arbitrary real

number. Since f is continuous at c, for ε > 0 there exists a real number δ > 0 (depending on ε > 0

and c) such that |f(x)− f(c)| < ε whenever |x− c| < δ and x ∈ A. . . . . . . . . . . . . (1)

Again xn → c, as n→∞. So for δ > 0, there exists a positive integer n0 such that

|xn − c| < δ for all n ≥ n0. . . . . . . . . . . . . . . . (2)

Combining (1) and (2) we get, |f(xn)− f(c)| < ε for all n ≥ n0. Therefore f(xn)→ f(c) as n→∞.
Conversely, suppose for every sequence {xn} of real numbers, xn ∈ A with xn → c as n → ∞, we

have f(xn) → f(c) as n → ∞. We want to show f is continuous at c. If possible, suppose that f is

not continuous at c. Then there exists an ε > 0 such that for every δ > 0 there exists a point x ∈ A
for which |f(x)− f(c)| ≥ ε and |x− c| < δ. Let we take δ = 1

n . Then for each positive integer n there

exists xn ∈ A such that |f(xn)− f(c)| ≥ ε and |x− c| < δ = 1
n .

Thus we get a sequence {xn} in A with xn → c as n→∞, whereas f(xn) 6→ f(c) as n→∞. This is

a contradiction to our assumption. So f must be continuous at c. �

Discontinuity criterion:

Let A ⊆ R, let f : A → R and let c ∈ A. Then f is discontinuous at c if and only if there exists

a sequence {xn} in A such that {xn} converges to c but the sequence {f(xn)} does not converge to

f(c).

Question 2.5. Show that f : R→ R defined by

f(x) = 1, x is rational

= 0, x is irrational

is discontinuous at every point of R.

Answer . Let c be a rational point. Then f(c) = 1. Since in any interval there are infinite number of

rational as well as irrational numbers, for each positive integer n we can find an irrational number xn

such that |xn − c| < 1
n . Thus xn → c as n → ∞. But f(xn) = 0 6→ f(c) = 1, as n → ∞. Therefore

f is not continuous at c. As c is an arbitrary rational number, so f is not continuous at any rational

number.

Again let d be any irrational number. Then f(d) = 0. Since in any interval there are infinite number

of rational as well as irrational numbers, for each positive integer n we can find a rational number xn

such that |xn − d| < 1
n . Thus xn → d as n→∞. But f(xn) = 1 6→ f(d) = 0, as n→∞. Therefore f

is not continuous at d. As d is an arbitrary irrational number, so f is not continuous at any irrational

number. Thus f is discontinuous everywhere.

Question 2.6. Let f : R→ R be defined by

f(x) = x, x is irrational

= −x, x is rational
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Show that f is continuous only at x = 0.

Answer . Let c be a rational number with c 6= 0. Since in any interval there are infinite number of

rational as well as irrational numbers, for each positive integer n we can find an irrational number xn

such that |xn−c| < 1
n . Thus xn → c as n→∞. But f(xn) = xn for all n and so f(xn)→ c as n→∞.

Since f(c) = −c, f(xn) 6→ f(c) as n→∞. Therefore f is discontinuous at c. Hence f is discontinuous

at every non-zero rational points.

Let d be an irrational number. Then f(d) = d. Since in any interval there are infinite number of

rational as well as irrational numbers, for each positive integer n we can find a rational number xn

such that |xn−d| < 1
n . Thus xn → d as n→∞. But f(xn) = −xn for all n and so f(xn)→ −d 6= f(d)

as n→∞. Therefore f is discontinuous at d. Hence f is discontinuous at every irrational points.

We now show that f is continuous at x = 0. Let ε > 0 be any real number. then there exists a real

number δ = ε > 0 such that for all x ∈ R,

|f(x)− f(0)| = |f(x)| = |x| < ε whenever |x− 0| < δ.

Therefore f is continuous at x = 0.

Question 2.7. Let f : R→ R be defined by

f(x) = 0, x is irrational

=
1

n
, x is rational no. and x =

m

n
6= 0,

where n > 0 and m,n are prime to each other

= 1, x = 0.

Prove that f is continuous at every irrational point and that f has a simple discontinuity at every

rational point.

Answer . Let c be an irrational number. Then f(c) = 0. Let ε > 0 be any given real number. Then

by Archimedean property there exists a natural number n0 such that 1
n0
< ε. There are only a finite

number of rationals with denominator less than n0 in the interval (c− 1, c+ 1). Hence we can choose

δ > 0 so small that neighborhood (c − δ, c + δ) contains no rational numbers with denominator less

than n0. So for all x ∈ R and |x− c| < δ, we have

|f(x)− f(c)| = |f(x)| ≤ 1

n0
< ε.

Therefore f is continuous at the point c. As c is an arbitrary irrational number, f is continuous at all

irrational numbers.

Let d be a rational number. Then f(d) > 0. Since in any interval there are infinite number of rational

as well as irrational numbers, for each positive integer n we can find an irrational number xn such that

|xn− d| < 1
n . Thus xn → d as n→∞. But f(xn) = 0 6→ f(d) as n→∞. Therefore f is discontinuous

at d. Hence f is discontinuous at every rational points.

Remark 2.8. Suppose f : A(⊆ R)→ R be any function and c ∈ A be a point, which is not a cluster

(limit) point of A. So there exists a δ > 0 such that (c− δ, c+ δ) ∩A = {c}. Thus for given ε > 0, we

have δ > 0 such that |f(x)− f(c)| < ε, whenever |x− c| < δ and x ∈ A. So f is continuous at c ∈ A.
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Discontinuities:

(A) Removal discontinuity:

A function f : A(⊆ R)→ R is said to be removal discontinuous at x = c if lim
x→c

f(x) exists but f is not

continuous at x = c. In this case, either f(c) is not defined or lim
x→c

f(x) 6= f(c), when f(c) is defined.

Suppose lim
x→c

f(x) = L. Then the function can be made continuous at x = c either by assigning the

value L to the function at x = c or by changing the value of the function at x = c to L.

Example 2.9.

• Let f : (0, 1)→ R be defined by f(x) = x sin 1
x . Then lim

x→0
f(x) = 0. So by assigning the value

0 to f(0) we see that f is continuous at 0. Thus f has a removal discontinuity at x = 0.

• Let f : [1, 3]→ R be defined by

f(x) =
x2 − 4

x− 2
, x 6= 2

= 10, x = 2.

Here lim
x→2

f(x) = 4 6= 10 = f(2). By changing the value of the function at x = 2 from 10 to 4,

i.e., f(2) = 4 we see that f is continuous at x = 2. Hence f is removal discontinuous at x = 2.

(B) Discontinuity of the first kind:

A function f : A(⊆ R)→ R is said to have a discontinuity of the first kind at x = c if lim
x→c−

f(x) and

lim
x→c+

f(x) both exist but are not equal.

f is said to have discontinuity of the first kind from the left at x = c if lim
x→c−

f(x) exists but not equal

to f(c).

f is said to have discontinuity of the first kind from the right at x = c if lim
x→c+

f(x) exists but not

equal to f(c).

Example 2.10.

• Let f : R→ R be defined by

f(x) = 3, x > 2

= 2, x = 2

= 1, x < 2.

Then lim
x→2+

f(x) = 3 and lim
x→2−

f(x) = 1. So f has a discontinuity of the first kind at x = 2.

• f : R→ R be defined by

f(x) = [x] ∀ x ∈ R,

where [x] denotes the largest integer less than or equal to x. Then f(x) is continuous at all

non-integral points. At an integral point x = n, lim
x→n+

f(x) = n and lim
x→n−

f(x) = n − 1. So

lim
x→n−

f(x) 6= f(n) = n. Therefore f has a discontinuity of the first kind from left at all integral

points.

• Let f : R→ R be defined by

f(x) =
x− |x|
x

, x 6= 0

= 2, x = 0.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

Sayan Das (July 6, 2024) Theory of Real Functions

14



Limit and Continuity

Then lim
x→+

f(x) = lim
x→0+

x−x
x = 0 and lim

x→0−
f(x) = lim

x→0−
x+x
x = 2. So lim

x→0+
f(x) 6= f(0) = 2.

Therefore f has a discontinuity of the first kind from right at x = 0.

(C) Discontinuity of the second kind:

A function f : A(⊆ R) → R is said to have a discontinuity of the second kind at x = c if neither

lim
x→c−

f(x) nor lim
x→c+

f(x) exists.

f is said to have discontinuity of the second kind from the left at x = c if lim
x→c−

f(x) does not exist.

f is said to have discontinuity of the second kind from the right at x = c if lim
x→c+

f(x) does not exist.

Example 2.11.

• Let f : R→ R be defined by

f(x) = sin
1

x
, x 6= 0

= 5, x = 0.

Then lim
x→0+

f(x) and lim
x→0−

f(x) both does not exist. Therefore, f has a discontinuity of the

second kind at x = 0.

• Let f : R+ ∪ {0} → R be defined by

f(x) =
1

x
sin

1

x
, x ≥ 0

= 0, x = 0.

Then lim
x→0+

f(x) does not exist and so f has a discontinuity of the second kind from right at

x = 0.

(D) Infinite discontinuity:

Let f : A(⊆ R)→ R. Then f is said to have an infinite discontinuity at x = c if f is not bounded on

any neighborhood of c.

Example 2.12.

• Let f : R+ → R be defined by

f(x) = log x, x > 0.

Then lim
x→0+

f(x) = −∞ and so f has infinite discontinuity at x = 0.

• Let f : R+ → R be defined by

f(x) =
1

x
, x > 0.

Then lim
x→0+

f(x) =∞ and so f has infinite discontinuity at x = 0.

• Let f : R+ → R be defined by

f(x) =
1

x

∣∣∣∣sin
1

x

∣∣∣∣ , x > 0.

Then lim
x→0+

f(x) does not exist but f is not bounded on any neighborhood of x = 0.
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(E) Jump discontinuity:

Let f : A(⊆ R)→ R. Then f is said to have a jump discontinuity at x = c if lim
x→c−

f(x) and lim
x→c+

f(x)

exist and lim
x→c−

f(x) 6= lim
x→c+

f(x). The jump of f at c is defined as

Jf (c) = f(c+)− f(c−).

Clearly f has a removal discontinuity if Jf (c) = 0 and jump discontinuity if Jf (c) 6= 0.

Let f : [a, b]→ R. If lim
x→a+

f(x) exists but not equal to f(a) then we say that f has a right hand jump

at x = a, the jump of f being f(a+)− f(a).

Let f : [a, b]→ R. If lim
x→b−

f(x) exists but not equal to f(b) then we say that f has a left hand jump

at x = b, the jump of f being f(b)− f(b−).

Example 2.13. Let f : [1, 2]→ R be defined by

f(x) = 4, x ∈ [1, 1.5)

= 3, x = 1.5

= 2, x ∈ (1.5, 2].

Then f has a jump discontinuity at x = 1.5.

Question 2.14. Let a < b < c. Suppose f is continuous on [a, b] and g is continuous on [b, c] and

f(b) = g(b). Define h on [a, c] by h(x) = f(x) if x ∈ [a, b] and h(x) = g(x) if x ∈ [b, c]. Prove that h

continuous on [a, c].

Question 2.15. Determine the points of continuity of the following functions:

(i) f(x) = x[x]; x ∈ R, (ii) g(x) = [sinx]; x ∈ R,
(iii) h(x) =

[
1
x

]
; x 6= 0, x ∈ R, (iv) k(x) = x− [x]; x ∈ R.

Theorem 2.16. Let f : K → R be a continuous function and K ⊆ R be compact set. Then f(K) is

compact set in R.

Proof. Let {yn} be a sequence in f(K). Then for each positive integer n there exists a real number

xn ∈ K such that f(xn) = yn. As K is compact, {xn} ⊆ K has a convergent subsequence {xnk
}

converging to some point, say x ∈ K. As f is continuous, xnk
→ x implies f(xnk

) → f(x) ∈ f(K),

as k → ∞. Therefore, ynk
converges to f(x) ∈ f(K). Since {yn} is arbitrary sequence, f(K) is

compact. �

Theorem 2.17. Let f : R → R. Then f is continuous if and only if f−1(G) is open set in R for

every open set G in R.

Proof. Let f : R → R be continuous. We want to show f−1(G) is open set in R, i.e., every point

in f−1(G) is an interior point. Let x0 ∈ f−1(G) = {x ∈ R : f(x) ∈ G}. Then f(x0) ∈ G. As G is

open, there exists a real number ε > 0 such that (f(x0)− ε, f(x0) + ε) ⊆ G. Since f is continuous, for

ε > 0 there exists δ > 0 such that f(x) ∈ (f(x0)− ε, f(x0) + ε) whenever x ∈ (x0 − δ, x0 + δ). Hence

f(x0−δ, x0+δ) ⊆ (f(x0)−ε, f(x0)+ε) ⊆ G, i.e., (x0−δ, x0+δ) ⊆ f−1(f(x0)−ε, f(x0)+ε) ⊆ f−1(G).

Therefore, x0 is an interior point of f−1(G). So, f−1(G) is open set in R, as x0 ia an arbitrary point.
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Conversely, let f−1(G) be open set in R for every open set G in R. We want to show f is continuous.

Let x0 ∈ R be arbitrary and let ε > 0 be given any real number. Then (f(x0)− ε, f(x0) + ε) be a open

set containing f(x0). Then f−1(f(x0)− ε, f(x0) + ε) is open in R and x0 ∈ f−1(f(x0)− ε, f(x0) + ε).

Therefore, there exists a real number δ > 0 such that (x0− δ, x0 + δ) ⊆ f−1(f(x0)− ε, f(x0) + ε), i.e.,

f(x0 − δ, x0 + δ) ⊆ (f(x0)− ε, f(x0) + ε). Hence f is continuous at x0. So f is continuous on R, as x0

is an arbitrary point. �

Theorem 2.18. Let f : [a, b]→ R be a continuous function. Then f is bounded.

Proof. We want to show that there exists a constant k > 0 such that |f(x)| ≤ k for all x ∈ [a, b]. If

possible let f be not bounded on [a, b]. Then for each positive integer n we can find a point xn ∈ [a, b]

such that f(xn) > n. Since [a, b] is bounded, the sequence {xn} is bounded. By Bolzano-Weierstrass

Theorem {xn} has a convergent subsequence {xnk
} converging to some point, say x. Since the set

[a, b] is closed and all the elements of the sequence {xnk
} belong to [a, b], we get x ∈ [a, b]. Now f

is continuous at x and {xnk
} converges to x. So, we must have {f(xnk

)} converges to f(x). Thus

{f(xnk
)} being convergent is bounded. But |f(xnk

)| > nk ≥ k for all k = 1, 2, . . . , which contradicts

the fact that {f(xnk
)} is bounded. Hence the supposition that f is not bounded is wrong. So f is

bounded on [a, b]. �

Remark 2.19. The Theorem 2.18 does not hold if the closed interval [a, b] is replaced by a non-closed

interval.

Example 2.20. Let f : (0, 1)→ R be defined by f(x) = 1
x . Then clearly f is continous on (0, 1) but

f is not bounded on (0, 1).

Theorem 2.21. A function f, continuous on [a, b], attains its bounds at least once in [a, b].

Proof. Since f is continuous on [a, b], it is bounded on [a, b], i.e., the set {f(x) : a ≤ x ≤ b} is bounded.

So the set {f(x) : a ≤ x ≤ b} has a supremum and a infimum which we denote by sup f and inf f

respectively.

We want to show that there exist points c, d in [a, b] such that f(c) = sup f = sup{f(x) : a ≤ x ≤ b}
and f(d) = inf f = inf{f(x) : a ≤ x ≤ b}. We first prove the result for sup f. let M = sup f. If possible

let there exists no x ∈ [a, b] such that f(x) = M.

Then consider the function g : [a, b] → R defined by g(x) = M − f(x) for all x ∈ [a, b]. Clearly g is

continuous on [a, b] and g(x) > 0 for all x ∈ [a, b]. So 1
g is also continuous on [a, b] and hence bounded

on [a, b]. Thus there exists a constant k > 0 such that

1

g
(x) < k for all x ∈ [a, b]

⇒ g(x) >
1

k
for all x ∈ [a, b]

⇒M − f(x) >
1

k
for all x ∈ [a, b]

⇒ f(x) < M − 1

k
for all x ∈ [a, b].

Thus we get a contradiction to the fact that M = sup f. Therefore, there exists at least one x ∈ [a, b]

for which f(x) = M. Thus f attains its supremum at least once in [a, b].
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The result for infimum follows as a consequence because the infimum of f is the supremum of −f.
This completes the proof of the theorem. �

Remark 2.22. If a function f is continuous on [a, b], then there exist points c, d ∈ [a, b] such that

m = f(c) ≤ f(x) ≤ f(d) = M for all x ∈ [a, b]. So f([a, b]) ⊆ [f(c), f(d)].

Remark 2.23. The Theorem 2.21 does not hold if the closed interval [a, b] is replaced by a non-closed

interval.

Example 2.24. Let f : (0, 1) → R be defined by f(x) = x2. Then f is bounded on (0, 1) as

0 < f(x) < 1 for all x ∈ (0, 1). Also sup f = 1 and inf f = 0. Hence f does not attain its bound on

(0, 1).

Theorem 2.25. Let f : [a, b] → R be a continuous function on [a, b]. If f(a)f(b) < 0, then there

exists c ∈ (a, b) such that f(c) = 0.

Proof. We assume that f(a) < 0 < f(b). We will generate a sequence of intervals by successive

bisections. Let I1 = [a1, b1], where a1 = a, b1 = b. Let p1 be the midpoint of a1 and b1, i.e.,

p1 = 1
2 (a1 + b1). If f(p1) = 0, we take c = p1 and we are done. If p1 6= 0, then either f(p1) > 0 or

f(p1) < 0. If f(p1) > 0, then we set a2 = a1, b2 = p1, while f(p1) < 0, then we set a2 = p1, b2 = b1.

In either case, we let I2 = [a2, b2]. Then we have I2 ( I1 and f(a2) < 0, f(b2) > 0.

We continue the bisection process. Suppose that the intervals I1, I2, . . . , Ik have been obtained by

successive bisection in the same manner. Then we have f(ak) < 0 and f(bk) > 0 and we set pk =
1
2 (ak+bk). If f(pk) = 0, we take c = pk and we are done. If pk > 0, then we set ak+1 = ak, bk+1 = pk,

while f(pk) < 0, then we set ak+1 = pk, bk+1 = bk. In either case, we let Ik+1 = [ak+1, bk+1]. Then

we have Ik+1 ( Ik and f(ak+1) < 0, f(bk+1) > 0.

If the process terminates by locating a point pn such that f(pn) = 0, then we are done. If the process

does not terminate, then we obtain a nested sequence of closed bounded intervals {In} = {[an, bn]}
such that for every n ∈ N we have f(an) < 0 and f(bn) > 0. Furthermore, since the intervals are

obtained by repeated bisection, the length of In is equal to (bn−an) = (b−a)
2n−1 . It follows from the Nested

Intervals Property that there exists a point c that belongs to In for every n ∈ N. Since an ≤ c ≤ bn

for all n ∈ N, we have 0 ≤ c − an ≤ bn − an = (b−a)
2n−1 and 0 ≤ bn − c ≤ bn − an = (b−a)

2n−1 . Hence, it

follows that lim
n→∞

(an) = c = lim
n→∞

(bn). Since f is continuous at c, we have

lim
n→∞

(f(an)) = f(c) = lim
n→∞

(f(bn)).

The fact that f(an) < 0 for all n ∈ N implies that f(c) = lim
n→∞

(f(an)) ≤ 0. Also, the fact that

f(bn) > 0 for all n ∈ N implies that f(c) = lim
n→∞

(f(bn)) ≥ 0. Thus, we conclude that f(c) = 0. �

Theorem 2.26. (Bolzano’s Intermediate Value Theorem)

Let I be an interval and let f : I → R be continuous on I. If a, b ∈ I and if k ∈ R satisfies

f(a) < k < f(b), then there exists a point c ∈ I between a and b such that f(c) = k.

Proof. Suppose that a < b and let g(x) := f(x)−k. Then g(a) < 0 < g(b). By the Theorem 2.25 there

exists a point c with a < c < b such that 0 = g(c) = f(c)− k. Therefore f(c) = k.

If b < a, let h(x) := k − f(x) so that h(b) < 0 < h(a). Therefore there exists a point c with a < c < b

such that 0 = h(c) = k − f(c). Therefore f(c) = k.

�

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

Sayan Das (July 6, 2024) Theory of Real Functions

18



Limit and Continuity

Monotone and Inverse functions:

Monotone functions are not always continuous.

Example 2.27. Let f : [0, 3]→ R be defined by

f(x) = 2, x ∈ [0, 2]

= 3, x ∈ (2, 3].

Then clearly f is increasing on [0, 3] but f is not continuous at x = 2, as f(2−) = 2 and f(2+) = 3.

The next theorem shows that monotone functions defined on interval always has one sided limits

in R at every point that is not an end point of its domain.

Theorem 2.28. Let f : [a, b]→ R be an increasing function and c ∈ (a, b). Then

(i) f(c−) = sup{f(x) : a ≤ x < c}

(ii) f(c+) = inf{f(x) : c < x ≤ b}.

Proof. Clearly for a ≤ x < c, we have f(x) ≤ f(c). So the set {f(x) : a ≤ x < c} is bounded above by

f(c). Hence sup{f(x) : a ≤ x < c} exists. Let M = sup{f(x) : a ≤ x < c}.
Let ε > 0 be any given real number. Then there exists an element xε, a ≤ xε < c such that

M − ε < f(xε) ≤ M. Let δ = c − xε. Then δ > 0. Now for all x ∈ (c − δ, c) and x ∈ [a, b] we have

xε < x < c and a ≤ x ≤ b. Therefore, we have M − ε < f(xε) ≤ f(x) ≤M < M + ε⇒ |f(x)−M | < ε.

Thus |f(x)−M | < ε whenever x ∈ (c− δ, c) ∩ [a, b]. Therefore,

lim
x→c−

f(x) = M = sup{f(x) : a ≤ x < c}.

Similarly, one can show that lim
x→c+

f(x) = inf{f(x) : c < x ≤ b}. �

Note. The result holds for any non-closed interval also.

Theorem 2.29. Let f : [a, b]→ R be a decreasing function and c ∈ (a, b). Then

(i) f(c−) = lim
x→c−

f(x) = inf{f(x) : a ≤ x < c}

(ii) f(c+) = lim
x→c+

f(x) = sup{f(x) : c < x ≤ b}.

Remark 2.30. From the last two theorems it follows that monotonic functions have no discontinuities

of the second kind.

Theorem 2.31. Let f be monotonic on (a, b). Then the set of points of (a, b) at which f is discon-

tinuous is countable.

Proof. Suppose that f is increasing on (a, b). Let D be the set of points at which f is discontinuous.

Then with every point x of D we associate a rational number r(x) such that f(x−) < r(x) < f(x+).

Now for any two points x1, x2 ∈ D with x1 < x2, we have f(x1+) ≤ f(x2−). So r(x1) 6= r(x2) if

x1 6= x2. Thus there exists a one-one correspondence between the set D and a subset of rational

numbers. As the set of rational numbers is countable, D is also countable. �
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Limit and Continuity

Theorem 2.32. (Continuous Inverse Theorem)

Let I ⊂ R be a closed and bounded interval and let f : I → R be strictly monotone and continuous on

I. Then the function g, inverse of f is strictly monotone and continuous on J = f(I).

Proof. Suppose f is strictly increasing on I and also suppose I = [a, b]. Since f is continuous on [a, b],

there exists points c, d ∈ [a, b] such that f(c) = inf{f(x) : a ≤ x ≤ b}, f(d) = sup{f(x) : a ≤ x ≤ b}
and f([a, b]) = [f(c), f(d)]. Thus range of f is also a closed and bounded interval. We now show that

f−1 : [f(c), f(d)]→ [a, b] exists.

Let x1, x2 ∈ [a, b] and x1 6= x2. If x1 < x2, then f(x1) < f(x2). If x2 < x1, then f(x2) < f(x1). Thus

in both cases f(x1) 6= f(x2). So, f is injective. Thus f : [a, b] → [f(c), f(d)] is a bijective function.

Hence f−1 exists. Let f−1 = g.

We now show that g is strictly increasing. For this let y1, y2 ∈ [f(c), f(d)] and y1 < y2. Then there

exist x1, x2 ∈ [a, b] such that f(x1) = y1, f(x2) = y2. As f is strictly increasing, we must have x1 < x2,

otherwise if x1 ≥ x2 then f(x1) ≥ f(x2)⇒ y1 ≥ y2, which contradicts the fact that y1 < y2. Therefore

y1 < y2 ⇒ g(y1) = x1 < x2 = g(y2). So, g is strictly increasing.

Finally we show that g is continuous on [f(c), f(d)]. If possible suppose that g is not continuous at some

point y0 ∈ [f(c), f(d)]. Then lim
y→y0−

g(y) < lim
y→y0+

g(y), as g is strictly increasing. Choose a number

x 6= g(y0) such that g(y0−) < x < g(y0+). Then x 6= g(y) for any y ∈ [f(c), f(d)]. Hence x 6∈ [a, b].

This contradicts the fact that g([f(c), f(d)]) = [a, b] is an interval. Therefore g is continuous. �

Theorem 2.33. Let I ⊂ R be a closed and bounded interval and let f : I → R be an injective

continuous function on I. Then f is strictly monotone on I.

Proof. Suppose I = [a, b]. Since f is injective on [a, b], we must have either f(a) < f(b) or f(a) > f(b).

Suppose that f(a) < f(b). We then show that f is strictly increasing on [a, b]. Let x ∈ (a, b). If

f(x) < f(a) < f(b), then by applying Bolzano’s intermediate value theorem to the function f on

[x, b], we get a point a′ ∈ (x, b) such that f(a) = f(a′). This contradicts the fact that f is injective.

So the relation f(x) < f(a) can’t hold.

Simliarly if f(a) < f(b) < f(x), then by applying Bolzano’s intermediate value theorem to the function

f on [a, x], we get a point b′ ∈ (a, x) such that f(b) = f(b′). This contradicts the fact that f is injective.

So the relation f(b) < f(x) can’t hold.

Thus f(a) < f(x) < f(b) for all x ∈ (a, b). Now let y ∈ (a, b) and x < y. Then f(a) < f(y) < f(b).

If f(a) < f(y) < f(x), then by preceding arguments there exists y′ ∈ (a, x) such that f(y) = f(y′),

which contradicts the fact that f is injective. Therefore f(y) > f(x). Then for x, y ∈ (a, b), with

x < y, we get f(x) < f(y). Hence f is strictly increasing on [a, b].

Similarly if f(a) > f(b), then we can show that f is strictly decreasing on [a, b]. �

3. Uniform Continuity

Definition 3.1. Let A ⊆ R and let f : A→ R. We say that f is uniformly continuous on A if for each

ε > 0 there exists δ > 0 (depending on ε) such that if x, y ∈ A are any numbers satisfying |x− y| < δ,

then |f(x)− f(y)| < ε.
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Limit and Continuity

Theorem 3.2. Let A ⊆ R and let f : A→ R. Then the following statements are equivalent:

(i) f is uniformly continuous on A.

(ii) Every pair of sequence {xn} and {yn} in A with lim
n→∞

(xn−yn) = 0 implies lim
n→∞

(f(xn)−f(yn)) = 0.

Proof. (i)⇒ (ii). Assume f is uniform continuous on A and suppose {xn} and {yn} are sequences in

A with lim
n→∞

(xn − yn) = 0. Here, we prove that the sequence {f(xn)− f(yn)} converges to 0.

Let ε > 0 be given. Then by the definition of uniform convergence, there exists δ > 0 such that

|f(x)−f(y)| < ε whenever |x−y| < δ and x, y ∈ A. Now we apply the definition of convergent sequence

for the given δ > 0 to obtain a natural number K(δ) such that if n > K(δ) then |(xn − yn)− 0| < δ.

But for each such (xn− yn), we have |f(xn)− f(yn)| < ε. Thus if n > K(δ), then |f(xn)− f(yn)| < ε.

Therefore, the sequence {f(xn)− f(yn)} converges to 0.

(ii) ⇒ (i). If possible, suppose that (i) is not true. Then there exists an ε > 0 such that for every

δ > 0 there exists points xδ, yδ ∈ A, such that |xδ − yδ| < δ and |f(xδ) − f(yδ)| ≥ ε. Let we take

δ = 1
n . Then for each positive integer n, there are points xn, yn ∈ A, such that |f(xn) − f(yn)| ≥ ε

and |xn − yn| < δ = 1
n .

Thus, we get two sequences {xn} and {yn} in A with (xn − yn) → 0 as n → ∞, whereas (f(xn) −
f(yn) 6→ 0 as n→∞. Therefore we have shown that if (i) is not true, then (ii) is not true. Thus we

conclude that (ii) implies (i). �

Example 3.3.

• Let f : (0, 1) → R be defined by f(x) = 1
x . consider two sequences {xn} :=

{
1

n+1

}
and

{yn} :=
{

1
n+2

}
. Then lim

n→∞
(xn − yn) = 0, but lim

n→∞
(f(xn)− f(yn)) = 1. Therefore by Theo-

rem 3.2, we conclude that f is not uniformly continuous on (0, 1).

• Let g : (0, 1) → R be defined by g(x) = sin( 1
x ). consider two sequences {xn} :=

{
2

(4n+1)π

}

and {yn} :=
{

1
nπ

}
. Then lim

n→∞
(xn − yn) = 0, but lim

n→∞
(f(xn) − f(yn)) = 1. Therefore by

Theorem 3.2, we conclude that g is not uniformly continuous on (0, 1).

• Let f : R → R be defined by h(x) = x2. consider two sequences {xn} :=
{
n+ 1

n

}
and

{yn} := {n} . Then lim
n→∞

(xn − yn) = 0, but lim
n→∞

(f(xn)− f(yn)) = 2. Therefore by Theorem

3.2, we conclude that h is not uniformly continuous on R.

Theorem 3.4. Let I ⊂ R be a closed and bounded interval and let f : I → R be continuous on I.

Then f is uniformly continuous on I.

Proof. If f is not uniformly continuous on I, then there exists an ε > 0 and two sequences {xn} and

{yn} in I such that |xn − yn| < 1
n and |f(xn) − f(yn)| ≥ ε for all n ∈ N. Since I is bounded, the

sequence {xn} is bounded. Therefore, by the Bolzano-Weierstrass Theorem there is a subsequence

{xnk
} of {xn} that converges to a point x. Since I is closed, the limit x belongs to I. Hence the

corresponding subsequence {ynk
} also converges to x, since

|ynk
− x| ≤ |ynk

− xnk
|+ |xnk

− x|.
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Limit and Continuity

Now, if f is continuous at the point x, then both the sequences {f(xnk
)} and {f(ynk

)} must converge

to f(x). But this is not possible, since

|f(xn)− f(yn)| ≥ ε,

for all n ∈ N. Thus the hypothesis that f is not uniformly continuous on the closed bounded interval

I implies that f is not continuous at some point x ∈ I. Consequently, if f is continuous at every point

of I, then f uniformly continuous on I. �

Definition 3.5. (Lipschitz Functions)

Let A ⊆ R and let f : A→ R. If there exists a constant K > 0 such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition) on A.

Theorem 3.6. Ia f : A→ R is a Lipschitz function, then f is uniformly continuous on A.

Proof. Since f is a Lipschitz function, there exists K > 0 such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ A. Now, for given any ε > 0, we can take δ = ε
K . If x, y ∈ A satisfy |x − y| < δ, then

|f(x)− f(y)| < K ε
K = ε. Therefore f is uniformly continuous on A. �

Example 3.7. If f(x) = x2 on A = [0, b], where b > 0, then

|f(x)− f(y)| = |x2 − y2| = |x+ y||x− y| ≤ 2b|x− y|

for all x, y ∈ A. Thus f satisfies Lipschitz condition with K = 2b. Therefore f is uniformly continuous

on [0, b] by Theorem 3.6.

Remark 3.8. The converse of the Theorem 3.6 is not true in general.

Example 3.9. Let f(x) =
√
x, on the bounded and closed interval I = [0, 2]. Then by Theorem 3.4,

f is uniformly continuous on [0, 2], but f does not satisfy Lipschitz condition on [0, 2], as

|f(x)− f(y)| = |√x−√y| = |x− y|√
x+
√
y
→∞, as x, y → 0.

Definition 3.10. (Cauchy Sequence)

A sequence {xn} ⊆ R is said to be Cauchy sequence if for given ε > 0 there exists K ∈ N (depending

on ε) such that |xm − xn| < ε, whenever m,n ≥ K.

Theorem 3.11. If f : A → R is uniformly continuous on a subset A of R and {xn} is a Cauchy

sequence in A, then {f(xn)} is a Cauchy sequence in R.

Proof. Let {xn} be a Cauchy sequence in A and let ε > 0 be given. First choose δ > 0 such that if

x, y ∈ A satisfy |x − y| < δ, then |f(x) − f(y)| < ε. Since {xn} is a Cauchy sequence, there exists

K ∈ N (depending on δ) such that |xm− xn| < δ, whenever m,n ≥ K. By the choice of δ, this implies

that for m,n ≥ K, we have |f(xm)− f(xn)| < ε. Therefore {f(xn)} is a Cauchy sequence in R. �
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Limit and Continuity

Example 3.12. Let f : (0, 1) → R be defined by f(x) = 1
x . Consider the sequence {xn} = { 1

n+1}
in (0, 1). The sequence {xn} = { 1

n+1} Cauchy in (0, 1), but the sequence {f(xn)} = {n + 1} is not

Cauchy in R. Hence, by Theorem 3.11, we conclude that f is not uniformly continuous on (0, 1).

Theorem 3.13. A function f : R→ R is uniformly continuous on the interval (a, b) if and only if it

can be defined at the end points a and b such that the extended function is continuous on [a, b].

Proof. “ If ” part easily follows from Theorem 3.4.

Here, we prove the “ only if ” part of the theorem. Suppose f is uniformly continuous on (a, b). We

shall show how to extend f to a continuously; the argument for b is similar. This is done by showing

that lim
x→a

f(x) = L (say) exists and this is accomplished by using the sequential criterion for limits. If

{xn} is a sequence in (a, b) with lim
n→∞

xn = a, then it is a Cauchy sequence. By the Theorem 3.11,

the sequence {f(xn)} is a Cauchy sequence. We know that a sequence in real numbers is convergent

if and only if it is a Cauchy sequence. Therefore the limit lim
n→∞

f(xn) = L (say) exists. If {yn} is

any other sequence in (a, b) that converges to a, then lim
n→∞

(yn − xn) = a − a = 0, so by the uniform

continuity of we have

lim
n→∞

f(yn) = lim
n→∞

(f(yn)− f(xn)) + lim
n→∞

f(xn) = 0 + L = L.

Since we get the same value L every sequence converging to a, we infer from the sequential criterion

for limits that f has limit L at a. Now, if we define f(a) := L, then f is continuous at a. The same

argument applies to b, so we conclude that f has a continuous extension to the interval [a, b].

This completes the proof of the theorem. �

Example 3.14.

• Since the limit of f(x) := sin( 1
x ) at 0 does not exists, we infer from the Theorem 3.13 that

the function is not uniformly continuous on [0, b] for any b > 0.

• On the other hand, since lim
x→0

x sin( 1
x ) = 0 exists, the function g(x) := x sin( 1

x ) is uniformly

continuous on [0, b] for any b > 0, by Theorem 3.13.
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§2 Limit and Continuity Exercises

Problem 2.1. Let f : R cont.−→ R s.t. f(x) = 0 for all x ∈ Q. Then prove that f(x) = 0
for all x ∈ R.

Proof. Suppose f : R cont.−→ R. Assume, towards a contradiction, that there exists an
x0 ∈ Q∁ s.t. f(x0) ̸= 0, then d := |f(x0)| > 0; take ε = d/2 > 0. As f is continuous
on R, there is a δ > 0 : |f(x)− f(x0)| < d/2 for all x : |x− x0| < δ.

As Q is dense in R, there is some x ∈ Q : |x− x0| < δ

=⇒ |f(x)− f(x0)| < d/2

∵x∈Q
=⇒ 0 < d = |0− f(x0)| < d/2.

Absurdity.

Thus there is no x ∈ Q∁ such that f(x) ̸= 0, so f(x) = 0 for all x ∈ R.

Problem 2.2. Let f, g : R cont.−→ R s.t. f(x) = g(x) for all x ∈ Q. Does it imply f = g
on R ? Same question for Q∁ instead of Q.

Proof. The rationals are dense in R, so for every c ∈ R there exists a sequence of
rationals (xn)n≥1 converging to c. f, g continuous on R implies that f(xn) → f(c)
and g(xn) → g(c).

But f(x) = g(x) for all rational x, so f(xn) = g(xn) for all n ∈ Z+, whence

f(c) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(c) ∀c ∈ R.

Here we have only used the fact that the rationals are dense in R. As the irrationals
are also dense in R, the same result holds if we replace Q with Q∁.

Problem 2.3. Let f, g : R cont.−→ R s.t. f(x) = g(x) for all x ∈ D where D is a dense
subset of R. Does it imply f = g on R ?

Proof. Yes. As D is dense in R, for every c ∈ R there exists a sequence (xn)n≥1 of
elements in D converging to c. f, g continuous on R implies that f(xn) → f(c) and
g(xn) → g(c).

But f(x) = g(x) for all x ∈ D, so f(xn) = g(xn) for all n ∈ Z+, whence

f(c) = lim
n→∞

f(xn) = lim
n→∞

g(xn) = g(c) ∀c ∈ R.

Problem 2.4. Let f, g : R cont.−→ R s.t. f
(m
2n

)
= 0 for all m,n ∈ Z. Does it imply f = 0

on R ?

Proof. To show f = 0 on R it suffices to show that the set of dyadic rationals
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S =
{m
2n

: m,n ∈ Z+
}
is dense in R. For any x ∈ R,

⌈2nx⌉
2n

≤ 2nx

2n
= x <

⌈2nx⌉+ 1

2n
∀n ∈ Z

=⇒ 0 ≤ x− ⌈2nx⌉
2n

<
1

2n
= ε

=⇒
∣∣∣∣x− ⌈2nx⌉

2n

∣∣∣∣ < ε.

Thus, for every x ∈ R there is a sequence
(
⌈2nx⌉
2n

)
n≥1

of dyadic rationals converging

to x. Thus, S is dense in R, which, together with f
(
m
2n

)
= 0 for all integers m,n,

implies that f = 0 on R.

Problem 2.5. Let f, g : R cont.−→ R s.t. f
(
m+ n

√
2
)
= 0 for all m,n ∈ Z. Does it imply

f = 0 on R ?

Proof. To show f = 0 on R it suffices to show that S =
{
m+ n

√
2 : m,n ∈ Z+

}
is

dense in R. Now (S,+, ·) is a ring. Every additive subgroup of R with arbitrarily
small positive elements, i.e with limit point 0, is dense in R. As (S,+) is a subgroup
of R, we only need to show that 0 is a limit point of S.

Note that (S,+, ·) is a ring, so it is closed under multiplication and addition.

0 <
√
2− 1 = −1 +

√
2 < −1 +

3

2
=

1

2

=⇒ 0 < (−1 +
√
2)n <

1

2n
= ε ∀n ∈ Z+

=⇒
∣∣∣(−1 +

√
2)n
∣∣∣ < ε

=⇒ lim
n→∞

(−1 +
√
2)n = 0.

Which proves that f = 0 on R as f
(
m+ n

√
2
)
= 0 for all integers m,n.

Problem 2.6. Let f, g : R cont.−→ R s.t. f (m+ nα) = 0 for all m,n ∈ Z where α ∈ Q∁.
Does it imply f = 0 on R ?

Proof. To show f = 0 on R it suffices to show that S =
{
m+ nα : m,n ∈ Z+

}
is

dense in R.

nα = ⌈nα⌉+
fractional part︷ ︸︸ ︷

{nα} ,

so if we can show that T = {{nα} : n ∈ Z} is dense in R then we’ll have proved
that S is dense in R. Now (T,+, ·) is a ring. So, as in the preceding problem, we
only need to show that 0 is a limit point of T .

Now for each k = 0, 1, . . . , n ∈ Z+ we have {kα} ∈ [0, 1). Write

[0, 1) =

[
0,

1

n

)
∪
[
1

n
,
2

n

)
∪ · · · ∪

[
n− 1

n
, 1

)
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as the union of n subintervals of length 1
n . But k can take n+ 1 possible values, so

{kα} can take n+1 values in the interval [0, 1). Thus, by the Pigeonhole Principle,
there exist i, j ∈ Z : 0 ≤ i < j ≤ n such that {iα}, {jα} lie in the same interval.
Thus,

|{(j − i)α}| = |{jα} − {iα}| < 1

n
= ε ∀n ∈ Z+

=⇒ |{nα}| < ε

=⇒ lim
n→∞

{nα} = 0.

Which proves that f = 0 on R as f (m+ nα) = 0 for all integers m,n.

Problem 2.7. Give examples of f, g : R → R s.t. f, g are discontinuous at a pt. x0 but

(i) f + g

(ii) f − g

(iii) fg

is continuous at x0.

Proof. (i) f = sgn, g = − sgn are discontinuous at 0 but f + g = 0 is continuous
at 0 (in fact everywhere).

(ii) f(x) =

{
0, x /∈ Q
1, x ∈ Q

, g(x) =

{
−1, x /∈ Q
0, x ∈ Q

are comtinuous nowhere

but f − g = 1 is continuous everywhere.

(iii) f(x) =

{
1, x > 1

0, x ≤ 1
, g(x) =

{
0, x > 1

1, x ≤ 1
is discontinuous at 1 but fg = 0 is

continuous at 1 (in fact everywhere).

Problem 2.8. Let f, g : R → R s.t. f, g are continuous at x0. Show that f +g, f −g, fg
are continuous at x0. If g ̸= 0 then show that f/g is continuous at x0.

Proof. Let (an) be a sequence in R converging to x0. Then, as f, g are continuous,
f(an) → f(x0), g(an) → g(x0). Thus from the properties of convergent sequences,

(f + g)(an) → (f + g)(x0), (f − g)(an) → (f − g)(x0),

(fg)(an) → (fg)(x0), and if g ̸= 0, (f/g)(an) = (f/g)(x0).

And sequential continuity is equivalent to ε− δ continuity.

Problem 2.9. (a) Let f, g, h : R → R s.t.

f(x) =

{
0, x /∈ Q
1, x ∈ Q

, g(x) =

{
0, x /∈ Q
x, x ∈ Q

, h(x) =





0, x /∈ Q
1
q , x = p

q ∈ Q \ {0}
1, x = 0

.

Show that f is continuous nowhere, g is continuous only at 0 and h is continuous
only at irrational points.
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(b) Prove that
lim

m→∞
(cos(πx))2m

exists for all x ∈ R and

lim
m→∞

(cos(πx))2m =

{
1, x ∈ Z
0, x /∈ Z

.

(c) Prove that

lim
n→∞

(
lim

m→∞
(cos(n!πx))2m

)

exists for all x ∈ R and

lim
n→∞

(
lim

m→∞
(cos(n!πx))2m

)
=

{
1, x ∈ Q
0, x /∈ Q

.

Also discuss the continuity of the limit functions.

Proof. (a) Dirichlet’s function f is continuous nowhere. For, let x ∈ R. If x ∈ Q,
then f(x) = 1. Choose ε = 1/2. Then for any δ > 0 we can always find an
irrational x′ (irrationals are dense in R) s.t.

|x′ − x| < δ =⇒ |f(x′)− f(x)| = |0− 1| ≥ 1/2 = ε.

Similarly, if x /∈ Q then f(x) = 0 so picking ε = 1/2 again, for any δ > 0 we
can always find a rational x′ (rationals are dense in R) s.t.

|x′ − x| < δ =⇒ |f(x′)− f(x)| = |1− 0| ≥ 1/2 = ε.

Thus, f is continuous nowhere.

The function g(x) = xf(x) is only continuous at 0. Let x ∈ R \ {0}. If x ∈ Q,
pick some ε = |x| > 0. Then for any δ > 0 we can always find an irrational x′

s.t.
|x′ − x| < δ =⇒ |g(x′)− g(x)| = |0− x| = |x| ≥ |x| = ε.

Similarly, if x /∈ Q, pick some ε = |x| > 0. Then for any δ > 0 we can always
find a rational x′ > |x| s.t.

|x′ − x| < δ =⇒ |g(x′)− g(x)| = |x′ − 0| = x′ ≥ |x| = ε.

Now let x = 0. Let ε > 0. Choose δ = min(ε, 1) > 0. For any x′ ∈ (−δ, δ) ∩Q
we have |g(x′)| = |x′| < δ < ε, and if x′ ∈ (−δ, δ) ∩Q∁ then we trivially have
|g(x′)| = 0 < ε. Thus for any δ > 0, we have

|x′| < δ =⇒ |g(x′)| < ε.

So g is continuous only at 0.

Thomae’s function h is continuous only at the irrationals. Let c = m
n ∈ Q

with gcd(m,n) = 1. There exists a sequence (xn) of irrational numbers in
R converging to c. Hence, h(xn) = 0 while h(c) = 1

n . This shows that h is
discontinuous at c. Now let c be irrational and let ε > 0 be arbitrary. Let
N ∈ N be such that 1

N < ε. In the interval (c − 1, c + 1), there are only a
finite number of rationals m

n with n < N , otherwise we can create a sequence
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mk
nk

with nk < N , all the rationals mk
nk

distinct and thus necessarily mk
nk

is
unbounded. Hence, there exists δ > 0 such that the interval (c − δ, c + δ)
contains only rational numbers x = m

n with n > N . Hence, if x = m
n ∈

(c− δ, c+ δ) then h(x) = 1
n <

1
N and therefore |h(x)−h(c)| = 1

n <
1
N < ε. On

the other hand, if x ∈ (c−δ, c+δ) is irrational then |h(x)−h(c)| = |0−0| < ε.
This proves that f is continuous at c.

(b) For any m ∈ Z, we have 0 ≤ cos(πx)2m ≤ 1. Now, cos(πx) = ±1 for integer
x, so that cos(πx)2m = 1. If x is not an integer, we have

0 ≤ cos(πx)2m < 1 =⇒ 0 ≤ cos(πx)2(m+1) < cos(πx)2 < 1

so that for x /∈ Z the sequence
(
cos(πx)2m

)
m∈Z+ is decreasing and bounded

below by 0, so

lim
m→∞

(cos(πx))2m =

{
1, x ∈ Z
0, x /∈ Z

.

(c) Let p = n!x. Then the inner limit is 1 iff p is integer, and p is an integer iff

x =
a

n!
, a ∈ Z.

As n→ ∞, x ranges over all possible rational values. So the double limit is 1
iff x ∈ Q. Likewise, it is 0 iff x /∈ Q. Now, let

f(x) = lim
n→∞

(
lim

m→∞
(cos(n!πx))2m

)
=

{
1, x ∈ Q
0, x /∈ Q

,

then f is another form of Dirichlet’s function which, as we’ve proved above,
is continuous nowhere.

Problem 2.10. Let S be closed in R and f : S
cont.−→ R. Let A = {x ∈ S : f(x) = 0}.

Show that A is closed in R.

Proof. f is continuous so K closed in R =⇒ f−1(K) closed in S, and if K is
closed in a closed subset of R then K is closed in R, so K is closed in R as S is
closed in R. Now, {0} is closed in R so f−1({0}) = A is closed in R, and thus A is
closed in R.

Problem 2.11. Let f, g : R cont.−→ R.

(i) Show that G = {x ∈ R : f(x) > 0} is open in R.

(ii) Show that F = {x ∈ R : f(x) = 0} is closed in R.

(iii) Show that F = {x ∈ R : f(x) ≤ 0} is closed in R.

(iv) Show that G = {x ∈ R : f(x) > g(x) + c} is open in R for fixed c ∈ R.

(v) Show that F = {x ∈ R : f(x) ≤ g(x) + c} is closed in R for fixed c ∈ R.

(vi) Show that S1 = {x ∈ R : ex > 1}, S2 = {x ∈ R : sin(x) < 1} are open in R
whereas S3 = {x ∈ R : ex = cosx}, S4 = {x ∈ R : sin(x) + 2 cos(x) ≥ 2} are closed
in R.
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One can replace the > by < and ≤ by ≥ in the above results.

Proof. 1. (0,∞) is open in R so G = f−1 ((0,∞)) is open in R.

2. {0} is closed in R so F = f−1 ({0}) is closed in R.

3. (−∞, 0] is closed in R so F = f−1 ((−∞, 0]) is closed in R.

4. h = f − g is continuous and G = {x ∈ R : f(x) > g(x) + c}

= {x ∈ R : h(x) > c}

so G = h−1 ((c,∞)) is closed in R.

5. h = f − g is continuous and F = {x ∈ R : f(x) ≤ g(x) + c}

= {x ∈ R : h(x) ≤ c}

so F = h−1 ((−∞, c]) is closed in R.

6. f1(x) = ex, f2(x) = − sin(x), f3(x) = ex − cos(x), f4(x) = sin(x) + 2 cos(x) are
continuous functions;

S1 = {x ∈ R : f1(x) > 1}, S2 = {x ∈ R : f2(x) > −1}

so they are open in R whereas

S3 = {x ∈ R : f3(x) = 0}, S4 = {x ∈ R : f4(x) ≥ 2}

so they are closed in R.

Problem 2.12. Let f : R cont.−→ R and f(x0) > c for some x0, c ∈ R. Show that there
exists a neighbourhood U of x0 s.t. f(x) > c ∀x ∈ U.

Proof. Choose an ε = f(x0)− c > 0. Then, as f is continuous, there exists a δ > 0 :

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε

=⇒ f(x0)− ε < f(x) < f(x0) + ε

=⇒ f(x0)− (f(x0)− c) < f(x) =⇒ f(x) > c.

Set Vδ(x0) = {x ∈ R : |x− x0| < δ}.

Thus, there exists a δ > 0 : x ∈ Vδ(x0) =⇒ f(x) > c.

Problem 2.13. Let f : [a, b]
cont.−→ R and f(x) > 0 ∀x ∈ [a, b]. Show that there exists a

c > 0 s.t. f(x) ≥ c ∀x ∈ [a, b].

Proof. Let c = min({f(x) : x ∈ [a, b]}) > 0. Such a c exists in [a, b] as [a, b] is
compact: f([a, b]) is the continuous image of a compact set so it is compact, thus
bounded so admitting an infimum and closed so that the infimum is in the set i.e.
minimum. Thus, f(x) ≥ c for all x ∈ [a, b].
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Problem 2.14. Let f : [a, b]
cont.−→ R s.t. for each x ∈ [a, b] there exists a y ∈ [a, b] with

|f(y)| ≤ 1

2
|f(x)|.

Show that there exists a c ∈ [a, b] s.t. f(c) = 0.

Proof. Construct the sequence (xn)n≥1 of elements in [a, b] iteratively by setting
x1 = b and for each xn = x ∈ [a, b] letting xn+1 = y ∈ [a, b] such that

|f(xn+1)| ≤
1

2
|f(xn)|, n > 1.

Then clearly,

|f(xn)| ≤
1

2n
|f(b)| =⇒ |f(xn)| → 0 as n→ ∞.

Now, [a, b] is compact so it is sequentially compact. Thus there exists a convergent
subsequence (xnk

) of (xn). Suppose xnk
→ c. Then f(xnk

) → f(c). But f(xnk
) → 0,

so f(c) = 0.

Problem 2.15. In the following either give an example of a continuous function f such
that f(S) = T or explain that there can be no such f :

we use the fact that the continuous image of a compact (connected) set is compact (con-
nected)

(i) S = (0, 1), T = (0, 1].

Ans.: Yes. f =

{
2x, x < 1/2

2(1− x), x ≥ 1/2
.

(ii) S = (0, 1), T = [0, 1].

Ans.: Yes. f =





0, x < 1/4

2(x− 1/4), x ∈ [1/4, 3/4]

1, x > 3/4

.

(iii) S = (0, 1), T = (1, 2) ∪ (2, 3).
Ans.: No. S is connected but T is not connected.

(iv) S = (−1, 1), T = R.
Ans.: Yes. f =

x

1− x2
which is continuous on (−1, 1).

(v) S = R, T = (−1, 1).

Ans.: Yes. f =
2

π
arctan(x) which is continuous on R.

(vi) S = [0, 1], T = R.
Ans.: No. S is compact but T is not compact.

(vii) S = [0, 1], T = Q.
Ans.: No. S is compact but T is not compact.

(viii) S = R, T = Q.
Ans.: No. S is connected but T is not connected.

(ix) S = (0, 1) ∪ (2, 3), T = {0, 3}.
Ans.: No. S is connected but T is not connected.
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(x) S =

{
1

n
: n ∈ Z+

}
∪ {0}, T =

{
1

2n
: n ∈ Z+

}
.

Ans.: No. S is compact but T is not compact.

(xi) S =

{
1

n2
: n ∈ Z+

}
∪ {0}, T = Z+.

Ans.: No. S is compact but T is not compact.

Problem 2.16. Let f : [a, b]
cont.−→ R. Define g : [a, b] → R by

g(x) = max
a≤y≤x

f(y), a ≤ x ≤ b.

Show that g is continuous on [a, b].

Proof. As [a, b] is compact, f attains its maximum on [a, b] and so g is well-defined.
Sps x1, x2 ∈ [a, b] with x2 > x1. Then,

g(x2) = max
a≤y≤x2

f(y) = max

(
max

a≤y≤x1

f(y), max
x1≤y≤x2

f(y)

)

= max

(
g(x1), max

x1≤y≤x2

f(y)

)
≥ g(x1).

So g is increasing on [a, b]. Also clearly at any point x0 ∈ [a, b] we have g(x0) ≥
f(x0). So we have two cases: either g(x0) > f(x0) or g(x0) = f(x0).

First case: g(x0) > f(x0)

We know that there exists a δ > 0 s.t |x− x0| < δ ⇒ |f(x)− f(x0)| < ε0 (since f is
continuous), with ε0 := g(x0)− f(x0) > 0. So we have

|x− x0| < δ ⇒ f(x) < f(x0) + ε0 = g(x0).

So for x ∈ [a, b] with |x− x0| < δ we have |g(x)− g(x0)| = 0.

Then for x ∈ [a, b] we have:

∀ε > 0 : |x− x0| < δ ⇒ |g(x)− g(x0)| = 0 < ε.

By which we have the continuity of g.

Second case: g(x0) = f(x0)

For x ∈ [a, x0] we have:

f(x) ≤ g(x) ⇒ −g(x) ≤ −f(x) ⇒ g(x0)− g(x) ≤ g(x0)− f(x)

⇒ 0 ≤ g(x0)− g(x) ≤ f(x0)− f(x) ⇒ |g(x)− g(x0)| ≤ |f(x)− f(x0)|.
Hence with continuity of f we get the continuity of g.

For x ∈ [x0, b] we have g(x) = f(s) for some s ∈ [x0, x]. With continuity of f we
have:

∀ε > 0 ∃δ > 0 : |x− x0| < δ ⇒ |f(x)− f(x0)| < ε.
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Hence
x ∈ [x0, x0 + δ) ⇒ |f(s)− g(x0)| < ε⇒ |g(x)− g(x0)| < ε.

By which we have, again, the continuity of g.

Problem 2.17. A function f defined on an interval I is said to be convex on I iff

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1].

Prove that if f is convex on an open inteval then f is continuous. Verify whether the
result is true for arbitrary intervals also.

Proof. Suppose I = (a, b). Pick any two points c, d ∈ (a, b) : c < d.

Let η > 0 : η <
d− c

2
. Consider x, y ∈ [c + η, d − η] : x < y. As f is convex on

(a, b), we have that f is bounded on [c, d] ⊂ (a, b) using the inequality,

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), ∀t ∈ [0, 1].

For, if z ∈ (c, d) then taking t =
z − c

d− c
∈ (0, 1) we have z = t(d−c)+c = (1−t)c+td,

and letting M = max(f(c), f(d)), we have

f(z) = f((1− t)c+ td) ≤ (1− t)f(c) + tf(d) ≤ (1− t)M + tM =M.

If z ∈
(
c+ d

2
, d

)
we have

c+ d

2
= (1− t)c+ tz, t =

c+d
2 − c

z − c
=

d− c

2(z − c)
∈ (0, 1)

so that

f

(
c+ d

2

)
= f((1− t)c+ tz) ≤ (1− t)f(c) + tf(z) ≤ f(c) + f(z)

=⇒ f(z) ≥ f

(
c+ d

2

)
− f(c).

If z ∈
(
c,
c+ d

2

)
we have

c+ d

2
= (1− t)z + td, t =

c+d
2 − z

d− z
=
c+ d− 2z

2(d− z)
∈ (0, 1)

so that

f

(
c+ d

2

)
= f((1− t)z + td) ≤ (1− t)f(z) + tf(d) ≤ f(z) + f(d)

=⇒ f(z) ≥ f

(
c+ d

2

)
− f(d).
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Letting

m =

(
f(c), f(d), f

(
c+ d

2

)
, f

(
c+ d

2

)
− f(c), f

(
c+ d

2

)
− f(d)

)

we have m ≤ f(z) ≤M, ∀z ∈ [c, d]. Thus f is bounded on [c, d], i.e., |f(x)| ≤ K for
some K > 0. We can then write,

x = (1− t)c+ ty, t =
x− c

y − c
∈ (0, 1).

Then,

f(x) ≤ (1− t)f(c) + tf(y) =⇒ f(x)− f(y) ≤ (1− t)(f(c)− f(y))

=
y − x

y − c
(f(c)− f(y))

=⇒ f(x)− f(y) ≤ y − x

y − c
(f(c)− f(y)) ≤ y − x

η
|f(c)− f(y)|

≤ 2M

η
(y − x).

Similarly, f(y)− f(x) ≤ 2M
η (y − x) so that

|f(y)− f(x)| ≤ 2M

η
|y − x|, ∀x, y ∈ [c+ η, d− η].

As c, d, η are arbitrary, it follows that f is continuous on (a, b). Because for any

ε > 0, we can pick a δ =
η

2M
ε > 0 s.t.

|y − x| < δ =⇒ |f(y)− f(x)| ≤ 2M

η
|y − x| < 2M

η
δ = ε.

If I is a general interval and f is convex on I, then f need not be continuous. For
example, define f : [0, 1) → R by

f =

{
−√

x, x > 0

1, x = 0

then clearly f is convex on [0, 1) but discontinuous at x = 0.

Problem 2.18. Let f : (a, b)
cont.−→ R. Show that for each x ∈ (a, b) there exists a

neighbourhood (x − δx, x + δx) = Vx such that f is bounded on Vx. Note that f may
not be bounded on (a, b).

Proof. By definition, f is continuous at x ∈ (a, b) iff for all ε > 0 there exists δx > 0 :

|x′ − x| < δ =⇒ |f(x′)− f(x)| < ε,

x′ ∈ (x− δx, x+ δx) =⇒ f(x)− ε < f(x′) < f(x) + ε,

x′ ∈ Vx =⇒ |f(x′)| ≤ max(|f(x)− ε|, |f(x) + ε|).
Which is what was to be shown.
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Problem 2.19. Let f : [a, b] → R s.t. for each x ∈ [a, b] there exists a neighbourhood
(x − δx, x + δx) = Vx s.t. f is bounded on Vx. Show that f is bounded on [a, b]. Note
that f may not be continuous on [a, b].

Proof. [a, b] is compact so it is sequentially compact i.e. there exists a sequence
(xn) ⊂ [a, b] with a subsequence (xnk

) s.t. xnk
→ ℓ ∈ [a, b]. Assume towards a

contradiction that there exists an x ∈ [a, b] s.t. f is unbounded. Then f(xn) > n
for every n ∈ Z+. From the problem there exists δℓ corresponding to ℓ s.t. f is
bounded on Vℓ = (ℓ − δℓ, ℓ + δℓ). Choose n large enough s.t. xn ∈ Vℓ. Then
f(xn) > n but f is bounded on Vℓ. Absurdity. Thus, f cannot be unbounded at
any point x ∈ [a, b].

Problem 2.20. Let f : A ⊆ R → R.

(i) Let f be continuous on A. If (xn)n≥1 is a convergent sequence in A then show
that (f(xn))n≥1 is also convergent. Verify whether convergent can be replaced by
Cauchy or bounded.

(ii) Let f be such that if (xn)n≥1 is a Cauchy sequence then (f(xn))n≥1 is also Cauchy
in A. Hence show that f is continuous on A.

Proof. (i) Sps f is continuous at x ∈ A and suppose (xn) ⊂ A : xn → x. Then it
suffices to show that f(xn) → f(x). For any ε > 0, by definition, there exists
δ > 0 :

x′ ∈ A : |x′ − x| < δ =⇒ |f(x′)− f(x)| < ε.

But as δ > 0 we also have

|xn − x| < δ, n ≥ n0

for some n0 ∈ Z+. Thus,

|f(xn)− f(x)| < ε, n ≥ n0.

As R is a complete metric space, convergent can be replaced by Cauchy as
convergence is equivalent to Cauchy convergence in a complete metric space.
Also, convergent can be replaced by bounded as convergence implies bound-
edness.

(ii) We are working over A ⊆ R so convergence and Cauchy are equivalent. Sps
(xn) ⊂ A is Cauchy s.t. xn → x, then from the problem we have that (f(xn))
is Cauchy as well s.t. f(xn) → f(x). Assume towards a contradiction that f
is discontinuous at x, so there exists ε > 0 : ∀δ > 0 :

|x′ − x| < δ =⇒ |f(x′)− f(x)| ≥ ε.

Take δ =
1

n
> 0, then

|xn − x| < 1

n
= δ =⇒ |f(xn)− f(x)| ≥ ε ∀n ∈ Z+

=⇒ f(xn) ̸→ f(x).
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But from the problem f(xn) → x. Absurdity. Thus, our assumption was
wrong and f must be continuous on A.

Problem 2.21. Let f : [a, b] → R be continuous on [a, b]. Suppose f has local maxima
at two different points x1 and x2. Show that there must be a third point between x1
and x2 where f has has a local minimum.

Problem 2.22. Let f : [a, b] → R be continuous on [a, b]. If f has neither a local
maximum nor a local minimum at any interior point then prove that f must be monotonic
on [a, b].

Problem 2.23. Let f : (a, b) → R be a function such that for each x ∈ [a, b] there exists
a neighbourhood (x − δx, x + δx) = Vx such that f is increasing on Vx. Show that f is
an increasing function throughout (a, b).

Problem 2.24. (i). Let f : [a, b] → R be monotone increasing and c ∈ (a, b). Then
show that f(c−) and f(c+) exist and

f(c−) = sup(f(x) : a ≤ x < c) and f(c+) = inf(f(x) : c < x ≤ b).

(ii). Let f : [a, b] → R be monotone decreasing and c ∈ (a, b). Then show that f(c−)
and f(c+) exist and

f(c−) = inf(f(x) : a ≤ x < c) and f(c+) = sup(f(x) : c < x ≤ b).

(iii) Let Df denote the set of discontinuities of a monotone increasing or decreasing
function f defined on an interval I. Show that f can’t have discontinuities of the 2nd
kind and Df is countable.
(iv) Let S = {x1, x2, . . . } ⊂ [a, b]. Does there exist a function f : [a, b] → R such that f
is monotone and the set of discontinuities of f is S ?

Proof. (i) For a ≤ x < c we have f(x) ≤ f(c) as f is increasing. So the set
{f(x) : a ≤ x < c} is bounded above and nonempty as f(a) is in the set.
Thus, M = sup(f(x) : a ≤ x < c) ∈ R exists. Let ε > 0. Then there exists an
element xε : a ≤ xε < c s.t. M − ε < f(xε) ≤ M. Letting δ = c − xε > 0 we
have

x ∈ (c−δ, c)∩[a, b] =⇒ x ∈ (xε, c)∩[a, b] =⇒ M−ε < f(xε) ≤ f(x) < M+ε

=⇒ |f(x)−M | < ε ∀x ∈ (c− δ, δ) ∩ [a, b]

Thus, lim
x→c−

f(x) =M = sup(f(x) : a ≤ x < c).

(ii) For a ≤ x < c we have f(x) ≥ f(c) as f is decreasing. So the set {f(x) :
a ≤ x < c} is bounded below and nonempty as f(a) is in the set. Thus,
m = inf(f(x) : a ≤ x < c) ∈ R exists. Let ε > 0. Then there exists an element
xε : a ≤ xε < c s.t. m ≤ f(xε) < m+ ε. Letting δ = c− xε > 0 we have

x ∈ (c−δ, c)∩ [a, b] =⇒ x ∈ (xε, c)∩ [a, b] =⇒ m−ε < f(x) ≤ f(xε) < m+ε

=⇒ |f(x)−m| < ε ∀x ∈ (c− δ, δ) ∩ [a, b]
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Thus, lim
x→c−

f(x) = m = inf(f(x) : a ≤ x < c).

Problem 2.25. Let f : [a, b] → R be monotone increasing. Then show that f is
continuous at a iff f(a) = inf(f(x) : a < x ≤ b) and f is continuous at b iff f(b) =
sup(f(x) : a ≤ x < b). (Similar result holds for monotone decreasing functions).

Problem 2.26. (i) If f is one-one and continuous on [a, b] then prove that f must be
strictly monotonic on [a, b]. If f is strictly increasing then show that f−1 : [f(a), f(b)] →
[a, b] exists, and is strictly increasing and continuous.
(ii) Let f : [a, b] → R be continuous on [a, b]. Then show that there is a function g such
that g ◦ f = id iff f is strictly monotone. Such a function f is called homeomorphism
between domain [a, b] and the range [f(a), f(b)].

Problem 2.27. Give an example of a function f defined and strictly increasing on a
set S in R such that f−1 is not continuous on f(S).

Problem 2.28. Let f be strictly increasing on a subset S of R. Show that f must be
continuous on S if f(S) has one of the following properties:

(i) f(S) is open (ii) f(S) is connected (iii) f(S) is closed.

Problem 2.29. Let f : [0, 1]
cont.−→ R s.t. for every y ∈ R either there is no x ∈ [0, 1] :

f(x) = y or there is exactly one such x. Show that f is strictly monotonic on [0, 1].

Problem 2.30. Let f : [0, 1] → R s.t. for every y ∈ R either there is no x ∈ [0, 1] :
f(x) = y or there are exactly two such values of x ∈ [0, 1] : f(x) = y. Then,

(i) Prove that f can’t be continuous on [0, 1].

(ii) Construct a function f which has the above property.

(iii) Prove that any function with this property has infinitely many discontinuities on
[0, 1].

Problem 2.31. Let f : [0, 1] → R s.t.

f(x) =

{
1− x, x ∈ Q∁

x, x ∈ Q

then show that

(i) f(f(x)) = x for all x ∈ [0, 1].

(ii) f(x) + f(1− x) = 1 for all x ∈ [0, 1].

(iii) f is continuous only at x =
1

2
.

(iv) f attains every value between 0 and 1.

(v) f(x+ y)− f(x)− f(y) is rational for all x, y ∈ [0, 1].
This shows that the converse of the intermediate value theorem is not true.

Proof. (i) f(f(x)) = f(1− x) = 1− (1− x) = x.

36



Sayan Das (July 6, 2024) Theory of Real Functions

Problem 2.32. Use intermediate value theorem for continuous functions to prove the
following:

(i) If n ∈ Z+ and a > 0 then there is exactly one b ∈ R : bn = a.

(ii) Let f(x) = tan(x). Although f(π/4) = 1 and f(3π/4) = 1 there is no x ∈
[π/4, 3π/4] : f(x) = 0. Explain why this does not contradict the intermediate value
theorem.

(iii) Let f : [a, b]
cont.−→ R. If f(a) ≤ a and f(b) ≥ b then prove that f has a fixed point in

[a, b] i.e. there exists some point c ∈ [a, b] : f(c) = c.

Problem 2.33. Let F be a closed set of real numbers and f be a real-valued function
continuous on F . Show that there exists a function g well-defined and continuous on R
s.t. f(x) = g(x) ∀x ∈ F. Such a function g is called the extension of f . Show that the
extension may not be possible if F is not closed.

Problem 2.34. (a) Let f : S ⊆ R uniform cont.−→ R. Show that

(i) (xn) ⊂ S convergent in S =⇒ (f(xn)) convergent in R.

(ii) (xn) ⊂ S Cauchy in S =⇒ (f(xn)) Cauchy in R.

(iii) A ⊂ S bounded =⇒ f(A) bounded. Give an example to show that if A is not
bounded then f(A) need not be bounded.

(b) Let f : S ⊆ R → R s.t. if (xn) is Cauchy in S then (f(xn)) is Cauchy in R. Verify
whether f is uniformly continuous or not.

Problem 2.35. (i) Let f : S ⊆ R → R s.t. f(x) = x2. If S ⊆ R is bounded then show
that f is uniformly continuous on S. What can you say if S is not bounded ?

(ii) Verify whether the following statement is true or false: Let f : K ⊆ R uniform cont.−→ R.
Then there exists a constant M > 0 s.t. |f(x)| ≤M |x| ∀x ∈ R.

Problem 2.36. Prove that f : S ⊆ R uniform cont.−→ R iff for every pair of sequences
(xn), (yn) ⊂ S with lim(xn − yn) = 0 we have lim(f(xn)− f(yn)) = 0.

Problem 2.37. Show that the functions

f(x) =
1

x
, g(x) = sin

(
1

x

)

are not uniformly continuous on (0,∞).

Problem 2.38. (i) Let f : [a, b]
cont.−→ R. Then show that f is uniformly continuous on

[a, b]. The result holds if [a, b] is replaced by a compact set K.

(ii) Let f : (a, b)
cont.−→ R. Then show that f is uniformly continuous iff

lim
x→a+

f(x) and lim
x→a−

f(x)

exist finitely.

(iii) Prove that f is uniformly continuous on (a, b) iff f can be defined at the endpoints
a, b s.t. the extended function is continuous on [a, b].

Problem 2.39. Show that K ⊆ R is compact iff every continuous function f : K → R
attains its maximum value.
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Problem 2.40. Let f : K ⊆ R cont.−→ R be bijective. If K is compact show that f−1 is
also continuous.

Problem 2.41. Show that if f is continuous on [0,∞), and uniformly continuous on
[a,∞) for some constant a > 0 then f is uniformly continuous on [0,∞).

Problem 2.42. Let f : A ⊆ R → R s.t. for every ε > 0 there exists a function
gε : A→ R s.t. gε is uniformly continuous on A and

|f(x)− gε(x)| < ε ∀x ∈ A.

Show that f is uniformly continuous on A.

Problem 2.43. Let f : A ⊆ R → R and K > 0 be a constant. If

|f(x)− f(y)| < K|x− y|α ∀x ∈ A

then f is said to be Lipschitz of order α.

(i) Show that f is continuous if α > 0 and differentiable if α > 1.

(ii) Find a Lipschitz function of order 1 for which the derivative does not exist.

(iii) If α = 1 then show that f is uniformly continuous.

Problem 2.44. Let f : R → R and t, a be nonzero fixed reals. Define g, h : R → R by
g(x) = f(x+ t), h(x) = f(ax). If f is continuous (uniformly continuous) then show that
g, h are continuous (uniformly continuous).

Problem 2.45. Let f : (a, b) → R be differentiable and f ′ be bounded on (a, b). Then
show that f is uniformly continuous on (a, b). Find a counterexample to show that the
converse need not be true.

Problem 2.46. Let f : R → R satisfy Cauchy’s functional equation

f(x+ y) = f(x) + f(y), ∀x, y ∈ R.

(i) If f is continuous at a point x0 then show that f is continuous on R and there exists
a constant c s.t.

f(x) = cx ∀x ∈ R.

(ii) If f is bounded above on some interval or f is monotonic on R then there exists a
constant c s.t.

f(x) = cx ∀x ∈ R.

Problem 2.47. Let f : R → R s.t.

f(x+ y) = f(x)f(y), ∀x, y ∈ R.

If f is continuous at x = 0 then show that f is continuous on R. Show that there exists
a constant c s.t.

f(x) = ecx ∀x ∈ R.

Problem 2.48. Let f : (0,∞) → R s.t.

f(xy) = f(x) + f(y), ∀x, y ∈ R.

If f is continuous at x0 ∈ (0,∞) then show that f is continuous on R. Show that there
exists a constant c s.t.

f(x) = c log(x) ∀x ∈ (0,∞).
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Problem 2.49. Let f : (0,∞) → R s.t.

f(xy) = f(x)f(y), ∀x, y ∈ R.

If f is continuous at x0 ∈ (0,∞) then show that f is continuous on R. Find all such
continuous functions.

Problem 2.50. Find all f : R cont.−→ R s.t. f(x)− f(y) is rational for rational x− y.

Problem 2.51. For |q| < 1 find all functions f : R → R s.t. f is continuous at 0 and
satisfies the functional equation

f(x) + f(qx) = 0.

Problem 2.52. Find all functions f : R → R s.t. f is continuous at 0 and satisfies the
functional equation

f(x) + f

(
2

3
x

)
= 0.

Problem 2.53. Find all f : R cont.−→ R satisfying the Jensen equation

f

(
x+ y

2

)
=
f(x) + f(y)

2
.

Problem 2.54. Find all f : (a, b)
cont.−→ R satisfying the Jensen equation

f

(
x+ y

2

)
=
f(x) + f(y)

2
.

Problem 2.55. If f : R → R be a function s.t. either f(x−) or f(x+) exists finitely
then show that the set of discontinuities of f is countable. The result holds even if the
limit exists infinitely.
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§3 Differentiability

Notes from the professor are appended in the following pages.
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1

DIFFERENTIABILITY OF REAL VALUED FUNCTION

PROF KALLOL PAUL

We begin with the definition of tangent to a curve y = f(x) at a point P. By a curve we mean a

continuous function f : [a, b]→ R.

Definition 0.1 (Tangent). Let y = f(x) be a given curve and P (x0, y0) be any point on it. Consider

another point Q(x1, y1) near to P on the curve. Then draw a straight line, known as secant of the

curve, passing through points P and Q. Let us now move the point Q towards P along the curve. If

the limiting position of the secant as Q approaches P exists then the limiting position of the secant

is known as the tangent to the curve y = f(x) at P. The existence of such a tangent to the curve at

a point is not always guaranteed.

Let α1 be the angle made by the secant PQ with the positive x-axis and α be the angle made by

the tangent at P with the positive x-axis. Then tanα1 = y1−y0
x1−x0

. As Q approaches P along the curve

we get α1 approaches α and so limQ→P
y1−y0
x1−x0

= limα1→α tanα1 = tanα.

O

P

Q

α

α1

Next we define derivative of a function y = f(x) at a point x0.

Definition 0.2 (Derivative). Let f : S ⊂ R → R be a function and x0 ∈ S be a limit point of S.

Then the function f is said to have a derivative at x0 if there exists a real number L such that

lim
x→x0

f(x)− f(x0)

x− x0
= L.

In other words f is said to be differentiable at x0 if there exists a real number L such that for any

given ε > 0 there exists δ > 0( depending on x0 and ε) that satisfies the following:
∣∣∣∣
f(x)− f(x0)

x− x0
− L

∣∣∣∣ < ε ∀ x ∈ (x0 − δ, x0 + δ) ∩ S, x 6= x0.

1For any further readings please see books by Rudin, Apostol or Bartle and Sherbert.
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Differentiability of real valued function

In such a case we say f is derivable at x0 or f is differentiable at x0 and we write f ′(x0) = L.

Observe that the existence of the limit

lim
x→x0

f(x)− f(x0)

x− x0

is equivalent to the existence of the limit

lim
h→0

f(x0 + h)− f(x0)

h
.

Let us note that these two definitions are equivalent in the sense that if f is derivable at a point

x0 then the tangent to the function f exists at the point P (x0, y0),

lim
Q→P

y1 − y0

x1 − x0
= lim
x→x0

f(x)− f(x0)

x− x0

The first definition is geometric and the second one is analytical.

There are functions for which the derivative at a point does not exist, consider f : R→ R defined by

f(x) = |x|. Then f is not differentiable at x = 0, note that there is a sharp edge at x = 0. As we have

already seen that the existence of limit of a function f as x → x0 is meaningful and interesting only

when x0 is a limit point of the domain of the definition of the function, so without loss of generality

we assume that the point under consideration is a limit point of the domain of the function.

Definition 0.3 (Differential of a function). Let f : S ⊂ R → R and x ∈ S be such that there exists

δ > 0 such that (x− δ, x+ δ) ⊂ S. The derivative of the function f at x is defined as

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
,

if the limit exists. Let y = f(x),∆x = h,∆y = f(x+ h)− f(x). The quantity ∆y denotes the change

in the value of the dependent variable y corresponding to the change ∆x of the independent variable

x. Then f ′(x) = lim∆x→0
∆y
∆x . Consider the function ε : (−δ, δ)→ R defined as

ε(h) =
f(x+ h)− f(x)

h
− f ′(x) =

∆y

∆x
− f ′(x).

O

f(x)

f(x+ ∆x)

x x+ ∆x

y

∆y

∆x

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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Differentiability of real valued function

It is easy to see that the existence of the derivative of the function f at x is equivalent to the fact

that limh→0 ε(h) = 0. Now,

∆y = f ′(x)∆x+ ε(∆x)∆x

indicates that the change ∆y is sum of two parts, one is linear part f ′(x)∆x and the other part is

ε(∆x)∆x, which can be made as small as possible compared to ∆x by making ∆x itself small enough.

The linear part in the expression ∆y is known as the differential of the function y = f(x) and we

write it as

dy = df(x) = f ′(x)∆x.

Thus for a function f which is differentiable at x, the differential of f is a well-defined function of ∆x.

For the particular function y = x, we get dx = ∆x. Thus the differential of the function y = f(x) can

be written as

dy = df(x) = f ′(x)dx.

Example 0.4. Let f : R→ R be defined as f(x) = x2. Consider the point x = 2. Clearly

∆y = (2 + ∆x)2 − 22 = 4.∆x+ ∆x2

and so the differential of f at x = 2 is dy = df(x)|x=2 = 4dx.

Theorem 0.5. Let f : S ⊂ R→ R and x0 ∈ S be a limit point of S. Then f is differentiable at x0 if

and only if there exists a unique function φ : S → R such that φ is continuous at x0 and

f(x)− f(x0) = (x− x0)φ(x) ∀x ∈ S.

Moreover, φ(x0) = f ′(x0).

Proof. We first prove the necessary part. Define φ : S → R by

φ(x) =
f(x)− f(x0)

x− x0
, x 6= x0

= f ′(x0), otherwise.

Then limx→x0
φ(x) = f ′(x0) = φ(x0) and so φ is continuous at x0. Also from the definition of φ it

follows that

f(x)− f(x0) = (x− x0)φ(x) ∀x ∈ S.
Next, we show that such function φ is unique. Let there be another function φ1 : S → R such that

φ1 is continuous at x0 and

f(x)− f(x0) = (x− x0)φ1(x) ∀x ∈ S.
Then for each x( 6= x0) ∈ S, φ(x) = φ1(x). Since φ, φ1 are continuous at x0, it follows that φ(x0) =

φ1(x0). Thus φ(x) = φ1(x) for all x ∈ S and so φ = φ1. This completes the proof of necessary part.

We next prove the sufficient part. Suppose φ : S → R is continuous at x0 and

f(x)− f(x0) = (x− x0)φ(x) ∀x ∈ S.

Then for all x 6= x0 we get φ(x) = f(x)−f(x0)
x−x0

and by continuity of φ at x0 we conclude that

φ(x0) = lim
x→x0

φ(x) = lim
x→x0

f(x)− f(x0)

x− x0
.

Thus f is differentiable at x0.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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Differentiability of real valued function

�

Theorem 0.6. Let f : S ⊂ R→ R and x0 ∈ S be such that there exists δ > 0 such that (x0−δ, x0+δ) ⊂
S. Then f is differentiable at x0 if and only if there exists a unique function φ : (−δ, δ)→ R such that

φ is continuous at 0 and

f(x0 + h)− f(x0) = hφ(h) ∀h ∈ (−δ, δ).

Moreover, φ(0) = f ′(x0).

Proof. We first prove the necessary part. Define φ : (−δ, δ)→ R by

φ(h) =
f(x0 + h)− f(x0)

h
, h 6= 0

= f ′(x0), otherwise.

Then limh→0 φ(h) = f ′(x0) = φ(0) and so φ is continuous at 0. Also from the definition of φ it follows

that

f(x0 + h)− f(x0) = hφ(h) ∀h ∈ (−δ, δ).

Next, we show that such function φ is unique. Let there be another function φ1 : (−δ, δ) → R such

that φ1 is continuous at 0 and

f(x0 + h)− f(x0) = hφ1(h) ∀h ∈ (−δ, δ).

Then for each h(6= 0) ∈ (−δ, δ), φ(h) = φ1(h). Since φ, φ1 are continuous at 0, it follows that φ(0) =

φ1(0). Thus φ(h) = φ1(h) for all h ∈ (−δ, δ) and so φ = φ1. This completes the proof of necessary

part.

We next prove the sufficient part. Suppose φ : (−δ, δ)→ R is continuous at 0 and

f(x0 + h)− f(x0) = hφ(h) ∀h ∈ (−δ, δ).

Then for all h 6= 0 we get φ(h) = f(x0+h)−f(x0)
h and by continuity of φ at 0 we conclude that

φ(0) = lim
h→0

φ(h) = lim
h→0

f(x0 + h)− f(x0)

h
.

Thus f is differentiable at x0. �

Theorem 0.7 (Differentiability implies continuity). Let S ⊂ R and x0 be a limit point of S. If f is

differentiable at x0 then f is continuous at x0 but the converse is not true.

Proof. Since f is differentiable at x0 so there exists a function φ defined on S, which is continuous at

x0 and satisfies

f(x)− f(x0) = (x− x0)φ(x) ∀x ∈ S.

Taking limit as x→ x0 we get

lim
x→x0

f(x) = f(x0).

This shows that f is continuous at x0. For the converse part, consider f : R→ R defined by f(x) = |x|.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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Differentiability of real valued function

−3 −2 −1 1 2 3

−1

1

2

3

x

y

Then f is continuous at 0. Observe that

f ′(0+) = lim
x→0+

|x|
x

= lim
x→0+

x

x
= lim
x→0+

1 = 1,

whereas, f ′(0−) = lim
x→0−

|x|
x

= lim
x→0−

−x
x

= lim
x→0+

−1 = −1.

So the function f is not differentiable at 0. �

Theorem 0.8 (Chain rule). Let S, T ⊂ R and x0 ∈ S be a limit point of S. Also assume y0 ∈ T is a

limit point of T. Let f : S → T and g : T → R be two functions such that f is differentiable at x0 and

g is differentiable at f(x0) = y0. Then g ◦ f : S → R is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f ′(x0).

Proof. Since f is differentiable at x0 so there exists a function φ defined on S, which is continuous at

x0 and satisfies

f(x)− f(x0) = (x− x0)φ(x) ∀x ∈ S.
Again, Since g is differentiable at y0 so there exists a function ψ defined on T, which is continuous at

y0 and satisfies

g(y)− g(y0) = (y − y0)ψ(y) ∀y ∈ T.
Also observe that, φ(x0) = f ′(x0) and ψ(y0) = ψ(f(x0)) = g′(y0). Now,

g ◦ f(x)− g ◦ f(x0) = g(f(x))− g(f(x0))

= ψ(f(x))(f(x)− f(x0))

= ψ ◦ f(x).φ(x)(x− x0).

Since composition of two continuous function is continuous so ψ ◦ f is continuous at x0, also product

of two continuous function is continuous so that (ψ ◦ f). φ is continuous at x0. Defining h : S → R by

h(x) = ψ ◦ f(x).φ(x) we see that h is continuous at x0 and h satisfies

g ◦ f(x)− g ◦ f(x0) = h(x)(x− x0) ∀x ∈ S.

This shows that g ◦ f is differentiable at x0 and

(g ◦ f)′(x0) = g′(y0)f ′(x0).

�
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Differentiability of real valued function

Remark 0.9. To illustrate the above result let us look at the function u(x) = cos(x3 + 3x). Consider

f(x) = x3+3x and g(x) = cosx. Then g◦f(x) = g(f(x)) = cos(x3+3x). Thus u′(x) = g′(f(x))f ′(x) =

− sin(x3 + 3x).(3x2 + 3) = −3(x2 + 1) sin(x3 + 3x).

Theorem 0.10. Let X,Y ⊂ R and f : X → Y be a function which is invertible. Let x0 ∈ X and

f(x0) = y0. If f is differentiable at x0 and f−1 is differentiable at y0 then

(f−1)
′
(y0) =

1

f ′(x0)
.

Proof. Clearly (f−1 ◦ f)′(x0) = (f−1)
′
(y0).f ′(x0) and f−1 ◦ f = IX , where IX is the identity function

on X. Then we get, (f−1)
′
(y0).f ′(x0) = 1 and so (f−1)

′
(y0) = 1

f ′(x0) . �

The next theorem shows that differentiability of f−1 at y0 is not essential in the hypothesis.

Theorem 0.11. Let X,Y ⊂ R and f : X → Y be a function which is invertible. Let x0 ∈ X

and f(x0) = y0. If f is differentiable at x0 and f−1 is continuous at y0, f
′(x0) 6= 0 then f−1 is

differentiable at y0 and

(f−1)
′
(y0) =

1

f ′(x0)
.

Proof. Since f is differentiable at x0 so there exists a unique function φ defined on X, which is

continuous at x0 and satisfies

f(x)− f(x0) = (x− x0)φ(x) ∀x ∈ X.

Also φ(x0) = f ′(x0) 6= 0. Then by the neighbourhood property of the continuous function φ there

exists δ > 0 such that φ(x) 6= 0 for all x ∈ (x0 − δ, x0 + δ) ∩ X. Since f−1 is continuous at y0 so

(f−1)−1((x0 − δ, x0 + δ) ∩ X) is an open set in Y containing the point y0. Let U = (f−1)−1((x0 −
δ, x0 + δ) ∩X). Then for all y ∈ U we get,

y − y0 = f ◦ f−1(y)− f ◦ f−1(y0) = f(f−1(y))− f(f−1(y0)) = φ(f−1(y))(f−1(y)− f−1(y0)).

Observe that φ ◦ f−1(y) = φ(f−1(y)) 6= 0 for all y ∈ U and so the function 1
φ◦f−1 is continuous at y0.

This along with the relation

f−1(y)− f−1(y0) =
1

φ ◦ f−1(y)
(y − y0)

implies that f−1 is differentiable at y0 and

(f−1)
′
(y0) =

1

f ′(x0)
.

�

Remark 0.12. The condition f ′(x0) 6= 0 is essential. Consider f : [0, 1]→ [0, 1] defined as f(x) = x3.

Then f is differentiable at 0 and f ′(0) = 0. Clearly f is bijective and so f−1 exists. But f−1(x) = x1/3

is not differentiable at 0, though continuous at 0.

Algebra of differentiable functions.
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Differentiability of real valued function

Theorem 0.13. Let S ⊂ R and x0 be a limit point of S. Let f, g : S → R be differentiable at x0.

Then

(i) f + g is differentiable at x0 and (f + g)′(x0) = f ′(x0) + g′(x0).

(ii) f.g is differentiable at x0 and

(f.g)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0).

(iii) For any real constant c, cf is differentiable at x0 and (cf)′(x0) = cf ′(x0).

(iv) if g(x) 6= 0 for all x ∈ S then 1
g is differentiable at x0 and ( 1

g )′(x0) = − g′(x0)
g(x0)2 .

(v) if g(x) 6= 0 for all x ∈ S then f
g is differentiable at x0 and

(f
g

)′
(x0) = −f

′(x0)g(x0)− f(x0)g′(x0)

g(x0)2
.

Remark 0.14. It may so happen that f is not differentiable at a point x0 but g is differentiable at

x0 and the product f.g is differentiable at x0. Consider f, g : R→ R defined as

f(x) = sin(1/x), x 6= 0

= 0, x = 0

g(x) = x2.

Then f.g : R→ R is given by

f.g(x) = x2 sin(1/x),

which is differentiable at 0, though f is not differentiable at 0.

−0.1 −5 · 10−2 5 · 10−2 0.1

−1

−0.5

0.5

1
·10−2

x

y

Definition 0.15 (Extreme value of a function). Let f : S ⊂ R→ R. Then

(i) f is said to have a relative maximum or maximum at a point x0 ∈ S if there exists δ > 0 such that

f(x) ≤ f(x0, ∀x ∈ (x0 − δ, x0 + δ) ∩ S.

(ii) f is said to have a relative minimum or minimum at a point x0 ∈ S if there exists δ > 0 such that

f(x) ≥ f(x0), ∀x ∈ (x0 − δ, x0 + δ) ∩ S.
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(iii) f is said to have a global maximum at a point x0 ∈ S if

f(x) ≤ f(x0), ∀x ∈ S.

(iv) f is said to have a global minimum at a point x0 ∈ S if

f(x) ≥ f(x0), ∀x ∈ S.

The function f is said to have a relative extremum at a point x0 if the function has either relative

maximum or relative minimum at x0.

Theorem 0.16. Let f : S ⊂ R → R be such that f attains its relative maxima ( or minima) at an

interior point c ∈ S. If f is differentiable at c then f ′(c) = 0.

Proof. Assume that f attains its maxima at c ∈ S. Then there exists δ > 0 such that

f(x) ≤ f(c), ∀x ∈ (c− δ, c+ δ) ∩ S.

Now, f(c + h) − f(c) ≤ 0, ∀h ∈ (−δ, δ) and so f ′(c+) = limh→0+
f(c+h)−f(c)

h ≤ 0, whereas f ′(c−) =

limh→0−
f(c+h)−f(c)

h ≥ 0.

O
x

y

f
(x

)

a c b

Since f is differentiable at c so the only possibility is that f ′(c+) = f ′(c−) = 0. Thus f ′(c) = 0. The

proof for the case when f attains its relative minima follows in the same spirit. �

Remark 0.17. Observe that the existence of derivative at a point is not necessary for a function to

have maxima or minima at that point. Consider the function f : R→ R defined as f(x) = |x|. Then

f has a minima at 0 but f is not differentiable at 0.

Theorem 0.18 (Rolle’s Theorem). Let f : [a, b]→ R be a function such that

(i) f is continuous on [a, b],

(ii) f ′ exists on (a, b) and

(iii) f(a) = f(b) = 0.

Then there exists a point c ∈ (a, b) such that f ′(c) = 0.

Proof. If f(x) = 0 for all x ∈ [a, b] then clearly f ′(x) = 0 for all x ∈ [a, b] and the result holds.

Without loss of generality assume that f(x) > 0 for some x ∈ (a, b). Since f is continuous on the

compact set [a, b], f attains its global maximum at some point c ∈ [a, b]. As f(a) = f(b) = 0, so

c ∈ (a, b). Now, f attains its maxima at c and f is differentiable at c imply that f ′(c) = 0.
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O
x

y

f
(x

)

a

bc

f ′(c) = 0

�

Remark 0.19. The condition f(a) = f(b) is sufficient to guarantee the existence of c ∈ (a, b) such that

f ′(c) = 0. Since f is continuous on the closed interval [a, b] so f attains its maximum and minimum

therein. First suppose that f attains its extremum values at a and b. Then f(a) = f(b) shows that

f is constant on [a, b] and so f ′(x) = 0 for all x ∈ [a, b]. Next, assume f attains its maximum or

minimum at some point c ∈ (a, b). Then c, being interior point of [a, b], we get f ′(c) = 0.

Remark 0.20. The geometrical interpretation of Rolle’s theorem is that there exists a point at which

the tangent to the curve is parallel to the x-axis.

The following examples illustrate the fact that all the three conditions mentioned in Theorem 0.18

are needed.

Example 0.21. (i) Let f : [0, 1]→ R be defined as

f(x) =
1

x
, x ∈ (0, 1)

= 0, x = 0, 1

Then f satisfies conditions (ii), (iii) but does not satisfy (i). Note that there does not exist c ∈ (0, 1)

such that f ′(c) = 0.

(ii) Let f : [−1, 1]→ R be defined as

f(x) = |x|.
Then f satisfies conditions (i), (iii) but does not satisfy (ii). Note that there does not exist c ∈ (−1, 1)

such that f ′(c) = 0.

(iii) Let f : [1, 2]→ R be defined as

f(x) = x.

Then f satisfies conditions (i), (ii) but does not satisfy (iii). Note that there does not exist c ∈ (1, 2)

such that f ′(c) = 0.

Theorem 0.22 (Mean Value theorem). Let f : [a, b]→ R be a function such that

(i) f is continuous on [a, b] and

(ii) f ′ exists on (a, b).

Then there exists c ∈ (a, b) such that

f(b)− f(a) = (b− a)f ′(c).
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Proof. Consider the function φ : [a, b]→ R defined as

φ(x) = f(x)− f(a)− f(b)− f(a)

b− a (x− a).

Then clearly φ is continuous on [a, b], φ′ exists on (a, b) and φ(a) = φ(b) = 0. So by Rolle’s theorem

there exists c ∈ (a, b) such that φ′(c) = 0. Observe that

φ′(x) = f ′(x)− f(b)− f(a)

b− a ∀x ∈ (a, b).

Thus we get

f(b)− f(a) = (b− a)f ′(c) for some c ∈ (a, b).

�

O x

y

f(x)

P

a c b

P1

P2

α

Remark 0.23. (i) This theorem is known as Lagrange’s Mean Value Theorem or Mean Value Theorem

of differential Calculus.

(ii) This theorem can also be stated as :

(a) Let f : [x1, x2] → R be a function such that f is continuous on [x1, x2] and f ′ exists on (x1, x2).

Then there exists θ ∈ (0, 1) such that

f(x2)− f(x1) = (x2 − x1)f ′(x1 + (x2 − x1)θ).

Note that each real number in [x1, x2] can be written in the form x1 + (x2 − x1)θ, for θ ∈ [0, 1].

(b) Let f : [x, x + h] → R be a function such that f is continuous on [x, x + h] and f ′ exists on

(x, x+ h). Then there exists θ ∈ (0, 1) such that

f(x+ h)− f(x) = hf ′(x+ θh).

(iii) The geometrical interpretation of Lagrange’s mean value theorem is that there is a point c ∈ (a, b)

at which the tangent to the curve is parallel to the chord joining the end points (a, f(a)) and (b, f(b)).

Theorem 0.24 (Cauchy Mean Value theorem). If f and g are continuous on the closed interval [a, b]

and differentiable on the open interval (a, b) then there exists a point c ∈ (a, b) such that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).
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If g′(x) 6= 0 for all x ∈ (a, b), then
f ′(c)
g′(c)

=
f(b)− f(a)

g(b)− g(a)
.

Proof. Consider the function h defined on [a, b] as

h(x) = [f(b)− f(a)]g(x)− [g(b)− g(a)]f(x).

Then h is continuous on closed interval [a, b] and differentiable on open interval (a, b). So there exists

c ∈ (a, b) such that

h′(c) =
h(b)− h(a)

b− a .

Clearly h(a) = f(b)g(a)− g(b)f(a) = h(b) so that

[f(b)− f(a)]g′(c) = [g(b)− g(a)]f ′(c).

�

Remark 0.25. The geometrical interpretation of Cauchy’s mean value theorem is that there is a

point c ∈ (a, b) at which the tangent to the curve h(x) = (f(x), g(x)) is parallel to the secant joining

the end points (f(a), g(a)) and (f(b), g(b)).

Theorem 0.26 (L’Hospital’s rule ( 0
0 form)). Suppose f and g are real valued functions differentiable

on (a, b) and g′(x) 6= 0 for all x ∈ (a, b). Suppose

f ′(x)

g′(x)
→ K as x→ a.

If f(x)→ 0 and g(x)→ 0 as x→ a then

f(x)

g(x)
→ K as as x→ a.

Proof. Consider first −∞ < K < ∞ and f(x) → 0 and g(x) → 0 as x → a. Let ε > 0. From the

definition of limit it follows that there exists c ∈ (a, b) such that for all x, a < x < c we have

K − ε < f ′(x)

g′(x)
< K + ε.

If a < x < y < c then by Cauchy’s mean value theorem there exists t ∈ (x, y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)
g′(t)

.

Thus for all x, y with a < x < y < c, we get

K − ε < f(x)− f(y)

g(x)− g(y)
< K + ε.

Letting x→ a we get

K − ε ≤ f(y)

g(y)
≤ K + ε, ∀y ∈ (a, c).

Next consider K =∞ and f(x)→ 0 and g(x)→ 0 as x→ a. Then given M > 0 there exists c ∈ (a, b)

such that
f ′(x)

g′(x)
> M, ∀x ∈ (a, c).

Then as above we get for all x, y with a < x < y < c,

f(x)− f(y)

g(x)− g(y)
> M.
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Letting x→ a we get for all y, y ∈ (a, c),

f(y)

g(y)
≥M.

This shows that
f(x)

g(x)
→∞ as x→ a.

The case for K = −∞ can be dealt similarly. �

Theorem 0.27 ( L’Hospital’s rule ( 1
∞ form) ). Suppose f and g are real valued functions differentiable

on (a, b) and g′(x) 6= 0 for all x ∈ (a, b). Suppose

f ′(x)

g′(x)
→ K as x→ a.

If g(x)→∞ as x→ a, then

f(x)

g(x)
→ K as as x→ a.

Proof. First consider the case −∞ < K <∞ and g(x)→∞ as x→ a. Let ε > 0. From the definition

of limit it follows that there exists c ∈ (a, b) such that for all x, a < x < c we have

K − ε < f ′(x)

g′(x)
< K + ε.

If a < x < y < c then by Cauchy’s mean value theorem there exists t ∈ (x, y) such that

f(x)− f(y)

g(x)− g(y)
=
f ′(t)
g′(t)

.

Thus for all x, y with a < x < y < c, we get

K − ε < f(x)− f(y)

g(x)− g(y)
< K + ε.

Keeping y fixed we can choose a point c1 ∈ (a, y) such that g(x) > g(y) and g(x) > 0 if a < x < c1.

Then

(K − ε)
(

1− g(y)

g(x)

)
<
g(x)− g(y)

g(x)
.
f(x)− f(y)

g(x)− g(y)
< (K + ε)

(
1− g(y)

g(x)

)
.

Thus,

(K − ε)
(

1− g(y)

g(x)

)
<
f(x)

g(x)
− f(y)

g(x)
< (K + ε)

(
1− g(y)

g(x)

)
.

Letting x→ a and noting that g(x)→∞ as x→ a we get,

(K − ε) ≤ lim
x→a

f(x)

g(x)
≤ (K + ε).

Since ε > 0 is arbitrary we get

lim
x→a

f(x)

g(x)
= K.

Next consider the case K = ∞. Let α > 1. Choose c ∈ (a, b) such that f ′(x)
g′(x) > α for all x ∈ (a, c).

Then for all a < x < y ≤ c , using Cauchy’s mean value theorem, we get

(1)
f(x)− f(y)

g(x)− g(y)
> α.
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Since g(x) → ∞ as x → a so we can assume that g(c) > 0 and |f(c)|
g(x) < 1

2 , 0 < g(c)
g(x) < 1

2 for all

x ∈ (a, c). Choosing y = c in the inequality (1) we get

(
1− g(c)

g(x)

)(f(x)− f(c)

g(x)− g(c)

)
> α

(
1− g(c)

g(x)

)
>
α

2
.

This implies that

f(x)

g(x)
>

1

2
α+

f(c)

g(x)
>

1

2
(α− 1).

Since α > 1 is arbitrary it follows that

lim
x→a

f(x)

g(x)
= K =∞.

The case for K = −∞ can be dealt similarly. �

Example 0.28. Evaluate lim
x→0

(
1
x − 1

x2 log(1 + x)
)
.

Solution. lim
x→0

(
1
x − 1

x2 log(1 + x)
)

= lim
x→0

(
x−log(1+x)

x2

)
. Consider the functions f : (0, 1) → R and

g : (0, 1) → R defined as f(x) = x − log(1 + x) and g(x) = x2, respectively. Clearly, f, g are

differentiable on (0, 1) and g′(x) = 2x 6= 0 for all x ∈ (0, 1). Now, f(x) → 0 and g(x) → 0 as x → 0.

Therefore, applying L’Hospital’s rule we get,

lim
x→0

(
1

x
− 1

x2
log(1 + x)

)
= lim

x→0

f(x)

g(x)

= lim
x→0

f ′(x)

g′(x)

= lim
x→0

1

2(1 + x)

=
1

2
.

Example 0.29. Evaluate lim
x→0

(cotx)sin x.

Solution. Let l = lim
x→0

(cotx)sin x. Then log l = lim
x→0

log(cot x)
cosec x . Consider the functions f : (0, 1) → R

and g : (0, 1) → R defined as f(x) = log(cotx) and g(x) = cosec x, respectively. Clearly, f, g are

differentiable on (0, 1) and g′(x) = −cosec x cotx 6= 0 for all x ∈ (0, 1). Now, g(x)→∞ as x→ 0 and

so applying L’Hospital’s rule we get,

log l = lim
x→0

f(x)

g(x)

= lim
x→0

f ′(x)

g′(x)

= lim
x→0

−( 1
cot x )(cosec2 x)

−cosec x cotx

= lim
x→0

sinx sec2 x = 0.

Therefore, l = e0 = 1.

As applications of Lagrange’s Mean Value Theorem, we can study the monotonicity of a function.
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Theorem 0.30. Let f be a differentiable function defined on an interval I ⊂ R. Then

(i) f ′(x) ≥ 0 if and only if f is increasing on the interval I.

(ii) f ′(x) ≤ 0 if and only if f is decreasing on the interval I.

(iii) f ′(x) = 0 for all x ∈ I if and only if f is constant.

Proof. We prove (i), the proof of (ii) follows in the same spirit. Assume first that f ′(x) ≥ 0 for all

x ∈ I. Let x1, x2 ∈ I and x2 > x1. Then using the Mean Value theorem for the function f on the

closed interval [x1, x2] we get,

f(x2)− f(x1) = f ′(c)(x2 − x1),

where c ∈ (x1, x2). Now, f ′(c) ≥ 0 and x2− x1 > 0 imply that f(x2) ≥ f(x1). Thus f is increasing on

I. On the other hand suppose that f is increasing on I. We want to show that f ′(x) ≥ 0 for all x ∈ I.
Observe that for small h, with h 6= 0

f(x+ h)− f(x)

h
≥ 0, ifh > 0

f(x)− f(x+ h)

−h ≥ 0, ifh < 0

Thus f ′(x+) ≥ 0 and f ′(x−) ≥ 0 which shows that f ′(x) ≥ 0.

The proof of (iii) follows easily from the Mean Value theorem. �

The non-negativity of differentiability at a point does not induce the monotonicity. For example

consider the functionf : [−2π, 2π]→ R defined by

f(x) = x+ 4x2 sin
(

1
x

)
, x 6= 0

= 0, x = 0.

Then f is differentiable on [−2π, 2π] and

f ′(x) = 1 + 8x sin
(

1
x

)
− 4 cos

(
1
x

)
, x 6= 0

= 1, x = 0.

Thus f ′(0) = 1 > 0 but f is neither increasing nor decreasing in a neighbourhood of 0.

Motivation behind Taylor’s formula

Consider a polynomial p(x) in x of order n as

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n.

Putting x = a+ h and expanding each term in powers of h we get

(2) p(a+ h) = c0 + c1h+ c2h
2 + . . .+ cnh

n,

where c0, c1, . . . , cn are constants independent of h. Putting h = 0 in equation (2) we get c0 = p(a).

Differentiating (1) w.r.t. h and putting h = 0 we get c1 = p′(a). Proceeding in this way differentiating

successively and putting h = 0 we get

ck =
1

k!
pk(a) for each k = 0, 1, 2, . . . , n.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

Sayan Das (July 6, 2024) Theory of Real Functions

54



Differentiability of real valued function

Thus the Taylor’s formula for polynomials is

p(a+ h) = p(a) + hp′(a) +
h2

2!
p′′(a) + . . .+

hn

n!
pn(a).

This formula which holds for polynomials also holds for non-polynomial functions with some modifi-

cations provided they satisfy certain conditions. This was first observed by Taylor, a pupil of Newton.

Theorem 0.31 (Taylor’s formula). Let f : [a, b]→ R be a function such that

(i) f, f ′, f ′′, . . . , fn−1 are continuous on the closed interval [a, b] and

(ii) f, f ′, f ′′, . . . , fn exist on the open interval (a, b).

Assume that u, v are two distinct points in [a, b]. Define p : [a, b]→ R as

p(t) = f(u) + (t− u)f ′(u) +
(t− u)2

2!
f ′′(u) + . . .+

(t− u)n−1

(n− 1)!
fn−1(u).

Then there exists a point x between u and v such that

f(v) = p(v) +
(v − u)n

(n)!
fn(x)

i.e., f(v) = f(u) + (v − u)f ′(u) +
(v − u)2

2!
f ′′(u) + . . .+

(v − u)n−1

(n− 1)!
fn−1(u) +

(v − u)n

n!
fn(x).

The last term is known as the remainder term in Lagrange’s form.

Proof. Consider the function φ : [a, b]→ R defined as

φ(t) = f(t)− p(t)−K(t− u)n,

where the constant K is chosen in such a way that φ(u) = φ(v). From the definition of p(t) it follows

that

pk(u) = fk(u) ∀k = 0, 1, 2, . . . , n− 1.

Observe that φ(u) = 0 and so we can choose K = f(v)−p(v)
(v−u)n . Also we get, φ(u) = φ′(u) = · · · =

φn−1(u) = 0. The choice of K forces φ(v) = 0 and so there exists x1 ∈ (u, v) such that φ′(x1) = 0.

Since φ(u) = 0 and φ′(x1) = 0 so there exists x2 between u and x1 such that φ′′(x2) = 0. Proceeding

in this way we get xn between u and xn−1 ( to be precise between u and v ) such that φn(xn) = 0.

Also we have for all t ∈ (a, b)

φn(t) = fn(t)− n!K.

This implies that K = fn(xn)
n! and so naming xn = x we get

f(v)− p(v)

(v − u)n
− fn(xn)

n!
= 0, i.e., f(v) = p(v) +

(v − u)n

(n)!
fn(x).

Thus there exists x between u and v such that

f(v) = f(u) + (v − u)f ′(u) +
(v − u)2

2!
f ′′(u) + . . .+

(v − u)n−1

(n− 1)!
fn−1(u) +

(v − u)n

n!
fn(x).

�

Remark 0.32. This theorem can also be stated as Let f : [a, b]→ R be a function such that

(i) f, f ′, f ′′, . . . , fn−1 are continuous on the closed interval [a, b] and
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(ii) f, f ′, f ′′, . . . , fn exist on the open interval (a, b).

Assume that u, u+ h are two distinct points in [a, b]. Define p : [a, b]→ R as

p(t) = f(u) + (t− u)f ′(u) +
(t− u)2

2!
f ′′(u) + . . .+

(t− u)n−1

(n− 1)!
fn−1(u).

Then there exists a point x between u and u+ h such that

f(u+ h) = p(u+ h) +
hn

(n)!
fn(x),

i.e., f(u+ h) = f(u) + hf ′(u) +
h2

2!
f ′′(u) + . . .+

hn−1

(n− 1)!
fn−1(u) +

hn

n!
fn(x).

As an application of Taylor’s formula we can find sufficient conditions for maxima or minima of a

function f under certain conditions.

Theorem 0.33. Let f : [a, b]→ R and c be an interior point of [a, b]. Assume that f, f ′, f ′′, . . . , fn, fn

exist and are continuous on (c− δ, c+ δ) for some δ > 0. Let f ′(c) = f ′′(c) = . . . = fn−1(c) = 0 and

fn(c) 6= 0.

(i) Then f has a maximum at c if n is even and fn(c) < 0.

(ii) Then f has a minimum at c if n is even and fn(c) > 0.

(iii) Then f has neither a maximum nor a minimum if n is odd.

Proof. Let h 6= 0 be such that |h| < δ. Then using Taylor’s formula we get,

f(c+ h) = f(c) + hf ′(c) +
h2

2!
f ′′(c) + . . .+

hn−1

(n− 1)!
fn−1(c) +

hn

n!
fn(c+ θh),

where 0 < θ < 1. Since fn(c) 6= 0 and fn is continuous at c so there exists δ1 > 0 such that fn(x) 6= 0

for all x ∈ (c− δ1, c+ δ1). Choose δ2 = min{δ, δ1}. Then for all h with |h| < δ2 we have fn(c+ θh) 6= 0

and

f(c+ h)− f(c) =
hn

n!
fn(c+ θh).

We further observe that fn(c+ θh) preserves the sign of fn(c).

(i) Assume that n is even and fn(c) < 0. Then hn > 0 and fn(c+ θh) < 0 so that

f(c+ h)− f (c) < 0, i.e., f(c+ h) < f(c), ∀hwith |h| < δ.

Thus f has a maximum at c.

(ii) Assume that n is even and fn(c) > 0. Then hn > 0 and fn(c+ θh) > 0 so that

f(c+ h)− f (c) > 0, i.e., f(c+ h) > f(c), ∀hwith |h| < δ.

Thus f has a minimum at c.

(iii) Assume that n is odd. First consider the case fn(c) > 0. Then

f(c+ h)− f(c) = hn

n! f
n(c+ θh) > 0, ifh > 0

= hn

n! f
n(c+ θh) < 0, ifh < 0

Thus in a small neighbourhood of c f(c + h) − f(c) is positive at some point and negative at some

point which indicates that f neither has a maximum nor minimum at c. The case for fn(c) < 0 can

be dealt analogously. �
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Theorem 0.34 (Darboux Theorem). Let f : [a, b]→ R be a function such that f is differentiable at

every point of [a, b]. If f ′(a) < γ < f ′(b) then there exists c ∈ (a, b) such that f ′(c) = γ.

Proof. Consider the function φ : [a, b]→ R defined as φ(x) = f(x)−γx. Then φ is continuous on [a, b]

and φ is differentiable on [a, b]. Clearly φ′(x) = f ′(x)−γ, ∀x ∈ [a, b]. Observe that φ, being continuous

on a compact set [a, b], attains its minimum values at some point c ∈ [a, b]. Since φ is differentiable

at c so we have φ′(c) = 0, i.e., f ′(c) = γ. Observe φ′(a) = f ′(a)− γ < 0 so we get c 6= a. Also c 6= b.

Thus c ∈ (a, b) and f ′(c) = γ. �

Remark 0.35. (i) Note that we did not assume the continuity of the function f ′ but f ′ satisfies

the intermediate value property. The image of an interval under f ′ is an interval. This is inherent

property of a differentiable function.

(ii) If f is differentiable on [a, b] then f ′ can not have any simple discontinuities.

Example 0.36. Using Lagrange’s mean value theorem, show that z
1+z < log(1 + z) < z, (z > 0).

Solution. Consider the function f : [0,∞)→ R defined as f(x) = log(1 + x).

Then f ′(x) = 1
1+x . Let z > 0. Now f is continuous on [0, z] and f ′ exists on (0, z). So by Lagrange’s

mean value theorem, there exists θ ∈ (0, 1) such that f(z)−f(0)
z−0 = f ′(θz) and so

log(1 + z) =
z

1 + θz
.

As θ ∈ (0, 1) and θz < z, it follows that 1 < 1 + θz < 1 + z. Hence z
1+z <

z
1+θz < z. Thus

z

1 + z
< log(1 + z) < z for z > 0.

Example 0.37. Show that x < sin−1 x < x√
1−x2

, (0 < x < 1).

Solution. Consider the function f : [0, 1)→ R defined as f(x) = sin−1 x− x.
Then f ′(x) = 1√

1−x2
− 1 > 0, for x ∈ [0, 1). This implies that f(x) is a strictly increasing function in

[0, 1) and so f(x) > f(0) for 0 < x < 1. As f(0) = 0, f(x) > 0 for 0 < x < 1. Hence sin−1 x − x > 0

for 0 < x < 1 and so

x < sin−1 x for 0 < x < 1.

Next, consider the function g : [0, 1)→ R defined as g(x) = x√
1−x2

− sin−1 x.

Then g′(x) =

√
1−x2+

x(−2x)

2
√

1−x2

1−x2 − 1√
1−x2

= 1√
1−x2

(
1

1−x2 − 1
)
> 0, for x ∈ [0, 1). This implies that f(x)

is a strictly increasing function in [0, 1) and so f(x) > f(0) for 0 < x < 1. As f(0) = 0, f(x) > 0 for

0 < x < 1. Hence x√
1−x2

− sin−1 x > 0 for 0 < x < 1 and so

sin−1 x <
x√

1− x2
for 0 < x < 1.

Therefore, x < sin−1 x < x√
1−x2

, (0 < x < 1).

Example 0.38. Using Taylor’s formula, find the quadratic approximation of the function f(x) =√
4 + x at x = 0.

Solution. Consider the function f : [−1, 1]→ R defined as f(x) =
√

4 + x.

Then f ′(x) = 1
2
√

4+x
> 0, f ′′(x) = − 1

4(4+x)
√

4+x
. Clearly f, f ′ are continuous on [0, 1] and f, f ′, f ′′ are
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exists on (0, 1). So by Taylor’s formula the quadratic approximation of the function f(x) =
√

4 + x at

x = 0 is

P (x) = f(0) +
f ′(0)

1!
x+

f ′′(0)

2!
x2.

Now, f(0) = 2, f ′(0) = 1
4 , f
′′(0) = − 1

32 . Therefore, the required quadratic polynomial is

P (x) = 2 +
1

4
x− 1

64
x2.

Definition 0.39 (Convex function). Let S ⊂ R be a convex set. Recall that a non-empty set S is

said to be convex if s1, s2 ∈ S and t ∈ [0, 1] implies that (1− t)s1 + ts2 ∈ S. A function f : S → R is

said to convex if for all s1, s2 ∈ S and for all t ∈ [0, 1],

f((1− t)s1 + ts2) ≤ (1− t)f(s1) + tf(s2).

Geometrically, it means that the functional value of the line segment joining s1 and s2 in the convex

set S lies below the chord joining (s1, f(s1)) and (s2, f(s2)).

O
x

y

s1 s2s

(s
1
, f

(s
1
))

(s
2
, f

(s
2
))

(s
, f

(s
))

There is a nice connection between convexity and differentiability of a function on a convex set in

terms of the second derivative. Observe that a convex function is not necessarily differentiable. Look

at f : [−1, 1] → R defined by f(x) = |x|. Then f is convex but f is not differentiable at 0. On the

other hand if we consider f : [0, π/2]→ R defined by f(x) = sinx then f is differentiable but f is not

convex.

Theorem 0.40. Let f : (a, b)→ R be twice differentiable on (a, b). Then f is convex on (a, b) if and

only if f ′′(x) ≥ 0 for all x ∈ (a, b).

Proof. Let f : (a, b)→ R be convex. Consider x ∈ (a, b). Then

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
.

Consider h such that x+ h, x− h ∈ (a, b) and then by convexity of f we get

f(x) = f
(1

2
(x+ h) +

1

2
(x− h)

)
≤ 1

2
f(x+ h) +

1

2
f(x− h)

and this implies that

f(x+ h)− 2f(x) + f(x− h) ≥ 0.

Thus f ′′(x) ≥ 0, ∀x ∈ (a, b). �

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

Sayan Das (July 6, 2024) Theory of Real Functions

58



Differentiability of real valued function

Conversely assume f ′′(x) ≥ 0 for all x ∈ (a, b). Let u, v ∈ (a, b) and t ∈ (0, 1). Let x0 = (1−t)u+tv.

Then using Taylor’s formula for the function f, there exists x1 ∈ (u, x0) such that

f(u) = f(x0) + (u− x0)f ′(x0) +
1

2!
(u− x0)2f ′′(x1).

Similarly there exists x2 ∈ (x0, v) such that

f(v) = f(x0) + (v − x0)f ′(x0) +
1

2!
(v − x0)2f ′′(x2).

So,

(1− t)f(u) + tf(v) = f(x0) + 0.f ′(x0) + (1− t) 1

2!
(u− x0)2f ′′(x1) + t

1

2!
(v − x0)2f ′′(x2)

= f(x0) +M, (whereM ≥ 0)

≥ f(x0)

= f((1− t)u+ tv).

Thus we get,

f((1− t)u+ tv) ≤ (1− t)f(u) + tf(v), ∀t ∈ [0, 1]

This shows that f is convex on (a, b).

The next example of a function is the one which breaks our intuitive notion of continuity of a

function. The example of such a function was first provided by Weierstrass. The geometric intuition

does not hold anymore that for non-differentiability a sharp edge or vertex is there.

Example of a nowhere differentiable but everywhere continuous function.

Theorem 0.41. There exists a function f : R → R such that f is continuous everywhere but differ-

entiable nowhere.

Proof. Define φ(x) = |x| for −1 ≤ x ≤ 1 and extend the definition of φ(x) to all real x by φ(x+ 2) =

φ(x). Then for all s, t such that

|φ(s)− φ(t)| ≤ |s− t|.

Clearly φ is continuous on R. Define

f(x) =

∞∑

n=0

(3

4

)n
φn(x) where φn(x) = φ(4nx).

Since 0 ≤ φ ≤ 1.
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−3 −2 −1 1 2 3

−1

1

2

φ(x)

x

y

−3 −2 −1 1 2 3

−1

1

2

φ1(x)

x

y

−3 −2 −1 1 2 3

−1

1

2

φ2(x)

x

y

−3 −2 −1 1 2 3

−1

1

2

3

4

f(x) =
∑4
n=0

(
3
4

)n
φn(x)

x

y

By Weierstrass M-test the series
∑∞
n=0

(
3
4

)n
φn(x) converges uniformly on R. Since each φn is contin-

uous so f is continuous.

Now fix a real number x and a positive integer m. Put

δm = ±1

2
4−m,
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where the sign is so chosen that no integer lies between 4mx and 4m(x+ δm). This can be done, since

4m|δm| = 1
2 . Define

γn =
φ(4n(x+ δm))− φ(4nx)

δm
,

when n > m then 4nδm is an even integer, so that γn = 0 and when 0 ≤ n ≤ m |γn| ≤ 4n. Since

|γm| = 4m, we conclude that

∣∣∣f(x+ δm)− f(x)

δm

∣∣∣ =
∣∣∣
m∑

n=0

(3

4

)n
γn

∣∣∣

≥ 3m −
m−1∑

n=0

3n

=
1

2
(3m + 1).

As δm → 0 so m →∞. Hence f is not differentiable at x. �

Problems

(1) If f(x) = |x|3, then compute f ′(x), f ′′(x) for all real x and show that f (3)(0) does not exist.

(2) Let f : I → R be differentiable on an interval I. If f ′ is bounded on I then f satisfies Lipschitz

condition on I.

(3) Suppose f is defined on an interval containing c and f ′′(c) exists. Then show that

lim
h→0

f(c+ h)− 2f(c) + f(c− h)

h2
= f ′′(c).

Give an example to show that the limit on the left hand side may exist, even if f ′′(c) does not

exist.

(4) Let f be defined for all real x, and suppose that

|f(x)− f(y)| ≤ (x− y)2

for all real x and y. Prove that f is constant.

(5) Suppose f is defined in a neighbourhood of x and suppose f ′′(x) exists. Show that

lim
h→0

f(x+ h) + f(x− h)− 2f(x)

h2
= f ′′(x).

Show by an example that the limit may exist even if f ′′(x) does not.

(6) If

C0 +
c1
2

+ · · ·+ Cn−1

n
+

cn
n+ 1

= 0,

where C0, . . . , Cn are real constants. Prove that the equation

C0 + C1x+ · · ·+ Cn−1x
n−1 + Cnx

n = 0

has at least one real root between 0 and 1.

(7) Suppose f is defined and differentiable for every x > 0 and f ′(x) → 0 as x → +∞. Put

g(x) = f(x+ 1)− f(x). Prove that g(x)→ 0 as x→ +∞.
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(8) Suppose

(a) f is continuous for x ≥ 0,

(b) f ′(x) exists for x > 0,

(c) f(0) = 0,

(d) f ′ is monotonically increasing.

Put

g(x) =
f(x)

x
(x > 0)

and prove that g is monotonically increasing.

(9) Suppose f ′(x), g′(x) exist, g′(x) 6= 0 and f(x) = g(x) = 0. Prove that

lim
t→x

f(t)

g(t)
=
f ′(x)

g′(x)
.

(10) Suppose f ′(x) > 0 in (a, b). Prove that f is strictly increasing in (a, b) and let g be its inverse

function. Prove that g is differentiable, and that

g′(f(x)) =
1

f ′(x)
(a < x < b).

(11) Suppose f is differentiable in (a, b), (a < x < b), (x < αn < βn) for n = 1, 2, 3, . . . and

αn → x, βn → x. Show that the quotients

f(βn)− f(αn)

βn − αn
need not converge to f ′(x), as n→∞, but that they do if we impose the additional assumption

that the sequence { (βn−x)
(βn−αn)} is bounded.

(12) Using Lagrange’s mean value theorem, show that x
1+x2 < tan−1 x < x, (> 0).

(13) Use Lagrange’s mean value theorem to prove that | sinx− sin y| ≤ |x− y| for all x, y ∈ R.
(14) Show that x+ x2

2 < log(1 + x) < x− x2

2(1+x) , (x > 0).

(15) Show that x2

2(1+x) < x− log(1 + x) < x2

2 , (x > 0).

(16) Show that sinx lies between x− x3

6 and x− x3

6 + x5

120 .

(17) What is the third degree polynomial approximation of the function f(x) = e4x at x = 0.

(18) Assuming the validity of expansion, show that sin(ex − 1) = x+ x2

2! + 5x4

4! .

(19) Suppose f and g are complex differentiable functions on (0, 1) and f(x)→ 0, g(x)→ 0, f ′(x)→
A, g′(x)→ B as x→ 0, where A and B are complex numbers, B 6= 0. Prove that

lim
x→0

f(x)

g(x)
=
A

B
.

(20) Suppose g is a real function on R1, with bounded derivative (Say |g′| ≤ M). Fix ε > 0 and

define f(x) = x+ εg(x). Prove that f is one-to-one if ε is small enough.

(21) Suppose f is differentiable function on (a, b). Then show that f is convex if f ′ is monotonically

increasing.

(22) Let E be a closed subset of R.
(i) Show that there exists a continuous function f : R→ R for which E = {x ∈ R : f(x) = 0}.
(ii) Is it possible to find a function f which is differentiable on R such that E = {x ∈ R :

f(x) = 0}.
(iii) Can we find such a f which is n-times differentiable or is differentiable of all order?
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(23) Suppose f is differentiable on [a, b] and f(a) = 0. Assume that there exists a constant K such

that

|f ′(x)| ≤ K|f(x)|.
Prove that f(x) = 0 for all x ∈ [a, b].

(24) Let f, g be differentiable functions on R and suppose that f(0) = g(0). If f ′(x) ≤ g′(x) for all

x ≥ 0 then prove that f(x) ≤ g(x) for all x ≥ 0.

Department of Mathematics, Jadavpur University, Kolkata 700032, India
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§4 Taylor Theorems

§4.1 Some one-dimensional Taylor theorems

Remark. By definition, a function f : R → R which is continuous at 0 looks like a
constant function near 0, in the sense that

f(t) = f(0) + ϵ(t),

where ϵ(t) → 0 as t → 0. By definition, again, a function f : R → R which is differen-
tiable at 0 looks like a linear function near 0, in the sense that

f(t) = f(0) + f ′(0)t+ ϵ(t)|t|,

where ϵ(t) → 0 as t → 0. Taylor’s theorem establishes that a function f : R → R, if it
is (n − 1) times differentiable in a neighbourhood of 0 and n times differentiable at 0,
looks like a polynomial of degree n near 0, in the sense that

f(t) = f(0) + f ′(0)t+
f ′′(0)

2!
t2 + · · ·+ f (n)(0)

n!
tn + ϵ(t)|t|n,

where ϵ(t) → 0 as t→ 0.

Theorem 4.1 (A global Taylor’s theorem)

If f : (−a, a) → R is n times differentiable with |f (n)(t)| ≤ M for all t ∈ (−a, a),
then ∣∣∣∣∣∣

f(t)−
n∑

j=0

f (j)(0)

j!
tj

∣∣∣∣∣∣
≤ M |t|n

n!
.

Theorem 4.2 (The local Taylor’s theorem)

If f : (−a, a) → R, where a > 0 is (n − 1) times differentiable and f (n)(0) exists,
then

f(t) =
n∑

j=0

f (j)(0)

j!
tj + ϵ(t)|t|n,

where ϵ(t) → 0 then as t→ 0.
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§5 Advanced Calculus in One Real Variable

§5.1 Higher order derivatives

§5.1.1 Leibnitz rule

Theorem 5.1 (Leibnitz rule)

If f and g are n-times differentiable functions, then the product fg is also n-times
differentiable and its nth derivative is given by

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k),

where f (j) is the jth derivative of f with f (0) = f.

Proof. We proceed by induction on n.

For n = 1, (fg)′ = f ′g + fg′. This proves the base case.

Assume for our induction hypothesis that the theorem holds for a fixed n ∈ Z+, i.e.

(fg)(n) =

n∑

k=0

(
n

k

)
f (n−k)g(k).

Then,

(fg)(n+1) =

[
n∑

k=0

(
n

k

)
f (n−k)g(k)

]′

=
n∑

k=0

(
n

k

)
f (n+1−k)g(k) +

n∑

k=0

(
n

k

)
f (n−k)g(k+1)

=

n∑

k=0

(
n

k

)
f (n+1−k)g(k) +

n+1∑

k=1

(
n

k − 1

)
f (n+1−k)g(k)

=

(
n

0

)
f (n+1)g(0)+

n∑

k=1

(
n

k

)
f (n+1−k)g(k)+

n∑

k=1

(
n

k − 1

)
f (n+1−k)g(k)+

(
n

n

)
f (0)g(n+1)

=

(
n+ 1

0

)
f (n+1)g(0) +

(
n∑

k=1

[(
n

k − 1

)
+

(
n

k

)]
f (n+1−k)g(k)

)
+

(
n+ 1

n+ 1

)
f (0)g(n+1)

=

(
n+ 1

0

)
f (n+1)g(0) +

n∑

k=1

(
n+ 1

k

)
f (n+1−k)g(k) +

(
n+ 1

n+ 1

)
f (0)g(n+1)

=

n+1∑

k=0

(
n+ 1

k

)
f (n+1−k)g(k).
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Proposition 5.1 (Standard results)

We state some basic results.

1. Let y = xk, then

y(n) = Dny = k(k − 1) · · · (k − n+ 1)xk−n =
k!

(k − n)!
xk−n ∀n ∈ Z+.

In particular,

(i) if n = k ∈ Z+, then y(k) = k!;

(ii) if k ∈ Z+ : k < n, then y(n) = 0;

(iii) if k ∈ Z+ so that −k ∈ Z− and y = x−k, then

y(n) = (−1)n
k!

(k − n)!

1

xk+n
.

2. y = log(x) (x > 0) =⇒ y(n) = (−1)n(n− 1)!x−n.

3. y =
1

x− a
=⇒ y(n) = (−1)n

n!

(x− a)n+1
.

4. y =
1

ax+ b
=⇒ y(n) = (−1)n

n!

(ax+ b)n+1
an.

§5.2 Concavity and inflection points

Remark. We know that f ′(x) > 0 =⇒ f(x) is increasing and f ′(x) < 0 =⇒ f(x) is
decreasing. Clearly then the sgn(f ′′(x)) tells us whether f ′ is increasing or decreasing.
If ∃x = x0 ∈ R : f ′(x0) = 0, then x0 is a critical point of f .

If f ′(x0) = 0 then

1. f ′′(x0) < 0 =⇒ f(x) has a local maxima at x = x0.

2. f ′′(x0) > 0 =⇒ f(x) has a local minima at x = x0.

Even if f ′(x) ̸= 0 we can still extract some information about f(x) using the second
derivative.

Definition 5.1

concave

§5.3 Envelopes

§5.4 Curvature

§5.5 Asymptotes

§5.6 Integration by reduction formulas

Theorem 5.2 (Integration by reduction)

Let m, n ∈ Z.
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Figure 1: (x− a)2 + y2 = 1.

1. If In =
∫
sinn(x) dx then

In =
− sinn−1(x) cos(x)

n
+

(n− 1)In−2

n
.

2. If In =
∫
cosn(x) dx then

In =
cosn−1(x) sin(x)

n
+

(n− 1)In−2

n
.

3. If In =
∫
tann(x) dx then

In =
tann−1(x)

n− 1
− In−2.

4. If In =
∫
secn(x) dx then

In =
secn−2(x) tan(x)

n− 1
+

(n− 2)In−2

n− 1
.

5. If Im,n =
∫
sinm(x) cosn(x) dx then

Im,n =
sinm+1(x) cosn−1(x)

m+ n
+

(n− 1)Im,n−2

m+ n

=
− sinm−1(x) cosn+1(x)

m+ n
+

(m− 1)Im−2,n

m+ n

Proof. 1. In =

∫
sinn(x) dx =

∫
sinn−1(x) sin(x) dx

= sinn−1(x)

∫
sin(x) dx−

∫
d

dx

(
sinn−1(x)

)(∫
sin(x) dx

)
dx

= − sinn−1(x) cos(x)−
∫

cos(x)
(
(n− 1) sinn−2(x)

)
(− cos(x)) dx
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= − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) cos2(x) dx

= − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x)

(
1− sin2(x)

)
dx

= − sinn−1(x) cos(x) + (n− 1)

∫ (
sinn−2(x)− sinn(x)

)
dx

= − sinn−1(x) cos(x) + (n− 1)(In−2 − In).

Thus, nIn = In + (n− 1)In = − sinn−1(x) cos(x) + (n− 1)In−2.

2. In =

∫
cosn(x) dx =

∫
cosn−1(x) cos(x) dx

= cosn−1(x)

∫
cos(x) dx−

∫
d

dx

(
cosn−1(x)

)(∫
cos(x) dx

)
dx

= cosn−1(x) sin(x) +

∫
sin(x)

(
(n− 1) cosn−2(x)

)
sin(x) dx

= cosn−1(x) sin(x) + (n− 1)

∫
cosn−2(x) sin2(x) dx

= cosn−1(x) sin(x) + (n− 1)

∫
cosn−2(x)

(
1− cos2(x)

)
dx

= cosn−1(x) sin(x) + (n− 1)

∫ (
cosn−2(x)− cosn(x)

)
dx

= cosn−1(x) sin(x) + (n− 1)(In−2 − In).

Thus, nIn = In + (n− 1)In = cosn−1(x) sin(x) + (n− 1)In−2.

3. In =

∫
tann(x) dx =

∫
tann−2(x) tan2(x) dx

=

∫ tn−2

︷ ︸︸ ︷
tann−2(x) sec2(x) dx︸ ︷︷ ︸

dt

−
∫

tann−2(x) dx

=

∫
tn−2 dt− In−2

=
tn−1

n− 1
− In−2

=
tann−1(x)

n− 1
− In−2.

4. In =

∫
secn(x) dx =

∫
secn−2(x) sec2(x) dx

= secn−1(x)

∫
sec2(x) dx−

∫
d

dx
(secn−1(x))

(∫
sec2(x) dx

)
dx

= secn−1(x) tan(x)− (n− 2)

∫
secn−3(x) sec(x) tan(x) tan(x) dx
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= secn−1(x) tan(x)− (n− 2)

∫
secn−2(x) tan2(x) dx

= secn−1(x) tan(x)− (n− 2)

∫
secn−2(x)(sec2(x)− 1) dx

= secn−1(x) tan(x)− (n− 2)

∫ (
secn(x)− secn−2(x)

)
dx

= secn−1(x) tan(x)− (n− 2)

∫
(In − In−2) .

Thus,
(n− 1)In = In + (n− 2)In = secn−1(x) tan(x) + (n− 2)In−2.

5.
∫
sinm(x) cosn(x) dx

=

∫
sinm−1(x) cosn(x) sin(x) dx

= sinm−1(x)

∫
cosn(x) sin(x) dx−

∫
d

dx

(
sinm−1(x)

)(∫
cosn(x) sin(x) dx

)
dx

§5.7 Parametric equations

§5.8 Parameterizing a curve

§5.9 Arc length of a curve

§5.10 Arc length of parametric curves

§5.11 Area under a curve

§5.12 Area and volume of surface of revolution.
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