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§1 Limits and Continuity
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LIMIT AND CONTINUITY

PROF KALLOL PAUL

1. Limit

Definition 1.1. (Limit Point/Cluster Point)
Let A CR. A point ¢ € R is a limit point (cluster point) of A if for every 6 > 0 there exists at least
one point x € A, = # ¢ such that |z — ¢ < 4.

Theorem 1.2. A number ¢ € R is a limit point of a subset A of R if and only if there exists a

sequence {an} in A such that 1i_131 {an} = ¢ and a,, # ¢ for alln € N.

Definition 1.3. (Limit of a function at a point)
Let A(# 0) C R and ¢ be a limit point of A. Then a function f : A — R, is said to have a limit at
¢, if there exists a fixed real number L such that for any given real number e > 0, there exists a real
number § > 0 (depending on both € and the point ¢) such that

|f(z) — L] < € whenever |z — ¢| < and z € A.
We often write it as

lim f(x) = L

Example 1.4. Let f: (0,2) — R be defined by

flz) = 0, z<1
- 1, 1>z<2
2,,
)
L T
‘ (0 ‘ L
| (o) ‘
—1 a1 2 3

For any § > 0, there exists 1 € (1 — 4,1 + J) such that ;1 < 1 and so f(z1) = 0. So if we take
0<e<1,then |z —1] < # |f(z) — 1| < e. Hence 1 is not the limit of f at 1.
Note that if we take € > 1, then there exists 6 > 0 such that |z — 1| <0 = [f(z) — 1| <e.

1For any further readings please see books by Rudin, Apostol or Bartle and Scherbert.
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Next, we give an example, for which there does not exist any 6 > 0, for any ¢ > 0 such that
e —cl<d=|f(x)—L|<e

Example 1.5. Let f: (0,00) — R be defined by

f@)

Il
=
8

Il
S

-1
We check whether 0 is a limit of f at 0 or not. Let e > 0. If possible let there exist a § > 0 such that
|z — 0] <6 = |f(x) — 0] < e. By Archimedean property of R, there exists ng € N such that § > n%,

Let n > max{nog, €}, then % € (0,4) but f(%) =n > ¢, which is a contradiction. Thus for any € > 0
there does not exist any § > 0 such that |z — 0| < = |f(z) — 0| <e.

Next, we give an example, where for each § > 0, there exists ¢ > 0, such that |z —¢| < § =
|f(xz) — 1| <e, but the limit does not exist.

Example 1.6. Let f :[0,2] — R be defined by
fl@) = z, <1

= z—1,1<z<2

Here for each § > 0, there exists € ( take € > 1) such that |z — 1| < 6 = |f(z) — 1| < e. But for € < 1,
there does not exists 6 > 0, such that | — 1| < § = |f(z) — 1] < €. So at & = 1, the function f(z)
does not have a limit.

Theorem 1.7. Let ACR, let f: A— R and let ¢ be a limit point of A. Then f can have only one
limit at c.
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Proof. Let L, L’ € R be the two limits of f at c. Now for given any € > 0, there exists 6 > 0 such that
[f(z) — L| < § whenever 0 < |z —¢| < § and = € A. Also there exists §' > 0 such that |f(z) — L'| < §
whenever 0 < |z —¢| < ¢’ and z € A. Let §p := min{d,d’}. Then if x € A and 0 < |z — ¢| < do, the
Triangle Inequality implies that

€
2
Since € > 0 is arbitrary, we conclude that L — L’ = 0, i.e., L = L’. This complete the proof of the

= €.

L= L] = L= f(@) + f(@) = L'| S |L = @)+ |f(2) = | < 5 +

theorem. O

Theorem 1.8. Let A C R, let f: A — R and let ¢ be a limit point of A. Then the following statements
are equivalent:
(4) lim f(z) = L.
r—c
(#1) For every sequence {z,} in A that converges to ¢ such that x, # ¢ for all n € N, the sequence

{f(zn)} converges to L.

Proof. (i) = (ii). Assume f has limit L at ¢ and suppose {z,} is a sequence in A with nhﬁn;c Ty =c
and z,, # ¢ for all n € N. Here, we prove that the sequence {f(z,)} converges to L.

Let € > 0 be given. Then by the definition of limit, there exists § > 0 such that |f(z) — L| < €
whenever 0 < |z —¢| < § and z € A. Now we apply the definition of convergent sequence for the given
4 > 0 to obtain a natural number K (d) such that if n > K(4) then |z,, —c| < 6. But for each such z,,,
we have |f(z,) — L| < e. Thus if n > K(0), then |f(z,) — L| < €. Therefore, the sequence {f(z,)}
converges to L.

(#4) = (). If possible, suppose that (7) is not true. Then there exists an € > 0 such that for every
6 > 0 there exists a point = € A, with z # ¢, for which |f(z) — L| > e and 0 < |z — ¢| < J. Let we take
6= % Then for each positive integer n, there exists =, € A, with z,, # ¢, such that |f(z,) — L| > €
and |z, —c| <d=1.

Thus, we get a sequence {z,} in A\ {c} with z,, — ¢ as n — oo, whereas f(z,) /4 L as n — oc.
Therefore we have shown that if (¢) is not true, then (i¢) is not true. Thus we conclude that (i7)

implies (i). O

Divergence criteria:

Let ACR, let f: A— R and let ¢ be a limit point of A.

(a) If L € R, then f does not have limit L at ¢ if and only if there exists a sequence {x,} in A with
Z, # ¢ for all n € N such that the sequence {z,} converges to ¢ but the sequence {f(z,)} does not

converge to L.

(b) The function f does not have a limit at ¢ if and only if there exists a sequence {z,} in A with
z, # ¢ for all n € N such that the sequence {z,} converges to ¢ but the sequence {f(z,)} does not
converge in R.

Example 1.9. lim sin(1) does not exist in R.
z—0 x

Let f(z) = sin(L) for = # 0. Now, consider two sequences {z,,} := {1} and {y,} := {ﬁ}
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for n € N. Then 1i_1}1 z, = 0 and li_>m yn = 0. Now, f(z,) = sin(nr) = 0 for all n € N, so that
lim f(x,) = 0. On the other hand f(y,) = sin (W) = lforalln €N, so that lim flyn) = 1.
sin(1/z)

T T T T
-1 0.5 \/ 0.5 1 ¥
So, we conclude that lim sin(2) does not exist in R.

z—=0
Example 1.10. lim 1 does not exist in R.
z—0 %

Let f(z) = % for z # 0. Now, consider the sequence {z,} := {%} for n € N. Then lim z, = 0,
n—oo

but f(xzn) = n, which is not convergent in R. So, form condition (b) lin})% does not exist in R.
rz—0 "
200 3
100
-1 -0.5 0.5 1
—100 i

Definition 1.11. Let A C R, let f: A — R and let ¢ be a limit point of A. We say that f is bounded
on a neighborhood of ¢ if there exists a d-neighborhood Vs(c) := {x € R: |z —¢| < §} of ¢ and a
constant M > 0 such that | f(z)| < M for all z € AN Vs(c).

Theorem 1.12. If A CR and f : A — R has a limit at ¢ € R, then f is bounded on some neighborhood
of c.

Proof. Let ihglcf(at) = L. Then for € = 1, there exists § > 0 such that |f(z) — L| < 1 whenever
0<|z—c| <éand z e A Hence, we have |f(z)| — |L| <|f(z) — L| < 1. Therefore, if z € AN Vj(c),
z # ¢, then |f(z)| < |[L|+1.If c & A, we take M = |L|+1.If ¢ € A, we take M = max{|f(c)|,|L|+1}.
It follows that if 2 € AN Vj(e), then |f(z)| < M. This shows that f is bounded on the neighborhood
of Vs(c) of c. O

Definition 1.13. Let A C R and let f and g be functions defined on A to R. We define the sum
f + g, the difference f — g, and the product fg on A to R to be the functions given by
(f +9)(@) = f(2) + g(x), (f —9)(@) = f(z) — g9(2),
(f9)(z) == f(z)g(=),
for all x € A. Further, if b € R, we define the multiple bf to be the function given by
(bf)(x) :==bf(z) for all z € A.
Finally, if h(z) # 0 for all z € A, we define the quotient % to be the function given by
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(%) (z) == % for all z € A.

Theorem 1.14. Let A C R, let f and g be functions on A to R and let ¢ € R be a limit point of A.
Further let b € R.
(a) If lim f(xz) = L and lim g(x) = M, then:

r—c r—c

lim (f +9)(x) = L+ M, lim (f - g)(2) = L — M,
lim (fg)(x) = LM, lim (bf)(w) = L.

(b) Let h: A — R and let h(z) #=0 for all x € A. If lim h(z) = H # 0, then
Tr—c
lim (%) (z) = %

T—c

Theorem 1.15. (Squeeze Theorem)

Let ACR, let f,g,h: A— R and let ¢ be a limit point of A. Also let
f(z) <g(z) <h(z) forallz € A, x #c.

If lim f(z) =L = glglinc h(z), then glglAng(z) =L.

T—c

Proof. To prove this theorem we use the following results of sequence of real numbers:
Let {z,} and {y,} be two convergent sequence of real numbers. If z,, < y, for all n € N, then

lim z, < lim y,.
n—ro0 n—o0

Let {x,} be any sequence of real numbers such that ¢ # z,, € A for all n € N. If the sequence {z,}

converges to ¢, then by sequential criterion of limit and the above mentioned result we have
L= lim f(z,) < lim g(z,) < lim h(z,) = L.
n—o0 n—oo n—o0
Therefore lim g(z,) = L = lim g(z). O
n—00 r—c

Theorem 1.16. Let ACR, let f: A — R and let ¢ be a limit point of A. If

lim f(xz) >0 |respectively, lim f(z) <0,

Tr—c r—c

then there exists a neighborhood Vs(c) of ¢ such that f(x) > 0 [respectively, f(z) < 0] for all x €
ANVs(e), z #c.

Proof. Let lim f(x) = L and let L > 0. We take ¢ = £ > 0. Then there exists § > 0 such that
T—C

2
|f(z) — L] < £, whenever 0 < |z — ¢| < 4. Therefore it follows that if « € AN Vs(c), x # c, then
)~ L
f(x) >3 >0.
If L < 0, a similar arguments applies. O

One-sided Limits

Definition 1.17. Let ACR and let f: A — R.
(¢) If ¢ € R is a limit point of the set AN (¢,00) = {& € A : « > ¢}, then we say that L € R is

right-hand limit of f at ¢ and we write

lim f(z)=1L

T—ct
if given any € > 0 there exists > 0 (depending on € and the point ¢) such that for all z € A with
0<xz—c<Jd,then |f(z)— L| <e.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024



Sayan Das (July 6, 2024) Theory of Real Functions

Limit and Continuity

(#4) If ¢ € R is a limit point of the set AN (—o0,¢) = {x € A: z < ¢}, then we say that L € R is
left-hand limit of f at ¢ and we write

e ) =1L
if given any € > 0 there exists 6 > 0 (depending on € and the point ¢) such that for all € A with
0<c—x<d,then |f(z)— L| <e

Theorem 1.18. Let AC R, let f: A — R and let ¢ be a limit point of AN (c,00). Then the following
statements are equivalent:

() lim f(r)=L.

(i%) For every sequence {x,} in A that converges to ¢ such that z, > ¢ for all n € N, the sequence

{f(zn)} converges to L.

Theorem 1.19. Let A C R, let f : A — R and let ¢ be a limit point of AN(—o0, ¢). Then the following
statements are equivalent:

i) Jim fx) = L.

(ii) For every sequence {z,} in A that converges to ¢ such that x, < c¢ for all n € N, the sequence

{f(zn)} converges to L.

Theorem 1.20. Let ACR, let f: A — R and let ¢ be a limit point of both the sets AN (c,00) and
AN (—o0,c). Then ll_r)nf(;r) = L if and only if vl_i)m_ flx)=L= Em_ f(x).

Infinite Limits

Definition 1.21. Let A C R, let f: A — R and let ¢ be a limit point of A.

(i) We say that f tends to co as ¢ — ¢, and write

lim f(z) = oo

r—c
if for every o € R there exists 0 > 0 (depending on «) such that for all z € A with 0 < |z — ¢| < 4,
then f(z) > a.

(71) We say that f tends to —oo as & — ¢, and write
lim f(z) = —c0
r—c

if for every B € R there exists § > 0 (depending on ) such that for all z € A with 0 < |z —¢| < 4,
then f(z) < 8.

Theorem 1.22. Let ACR, let f,g: A— R and let ¢ be a limit point of A. Suppose that f(z) < g(x)
forallx € A, z #c.
(a) If lim f(z) = oo, then lim g(z) = 0.

r—c r—c

(b) If lim g(x) = o0, then lim f(x) = —oc.

Proof. (a) If ilﬁ)mc f(z) = oo and a € R is given, then there exists § > 0 (depending on «) such that
for all z € A with 0 < |z — ¢| < ¢, then f(z) > a. Since f(z) < g(z) for all € A, z # ¢, it follows
that if 0 < |z — ¢| < § and @ € A, then g(x) > . Therefore il_)mtg(r) = o0.

The proof of (b) is similar. O
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Limits at Infinity

Definition 1.23. Let A C R and let f : A — R. Suppose that (a,00) C A for some a € R. We say
that L € R is a limit of f as x — oo, and write

lim f(z)=

T—00

if given any € > 0 there exists K > a (depending on €) such that for any > K, then |f(z) — L| <.

Theorem 1.24. Let ACR, let f : A — R and let (a,00) C A for some a € R. Then the following
statements are equivalent:

(%) hm f(z)=1L.

€0 For every sequence {x,} in AN (a,00) such that nh_}rrolc(xn) = oo, the sequence {f(x,)} converges
to L.

Definition 1.25. Let A C R and let f: A — R. Suppose that (a,00) C A for some a € R. We say

that f tends to co [respectively —oc] as @ — oo, and write

lim f(z) = oo, |respectively li_)In f(z) = 700]

T—r0o0
if given any « € R there exists K > a (depending on «) such that for any z > K, then f(z) > «
[respectively f(z) < of.

Theorem 1.26. Let A C R, let f: A — R and let (a,00) C A for some a € R. Then the following
statements are equivalent:

(i) hm f(x) = oo, [respectively lun f(z) = —o0].

(m) For every sequence {x,} in (a oo) such that hm (Tn) = o0, then nh_)rgo f(zy) = oo [respectively,
nhjr;q f(xn) = —c0].

Theorem 1.27. Let A C R, let f,g: A — R and let (a,00) C A for some a € R. Suppose further
that g(x) > 0 for all x > a and that for some L € R, L # 0, we have
lim f@) _
(7) If L > 0, then lgn f(z) = oo if and only if ILm g(x) = oc.
(i) If L <0, then lim f(x) = —oo if and only if lim g(z) = —
T—00 r—r00

Proof. (i) Since L > 0, the hypothesis implies that there exists a; > a such that

0<1L (T)< LfOI‘T>(11
277 g(x)
Therefore we have (3L)g(z) < f(z) < (3L)g(x) for all z > a1, from which the conclusion follows
readily.
The proof of (i) is similar. O

2. Continuity

Definition 2.1. (Continuity of a function at a point)
Let ACR, let f: A— Randlet ¢ € A. Then f is said to be continuous at c if given any real number

€ > 0 there exists a real number 6 > 0 (depending on both € and the point ¢) such that

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
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|f(z) — f(c)] < € whenever |z —¢| < § and = € A.
In terms of limit notion it means
lim f(z) = f(c).
Note.

e Let f: [a,b] = R and let ¢ € (a,b). Then f is said to be continuous at ¢ if given any real
number € > 0 there exists a real number 6 > 0 (depending on both e and the point ¢) such
that

|[f(xz) — f(c)| < e whenever |z —¢| < § and = € [a, b].

e Let f:[a,b] = R. Then f is said to be continuous at a if given any real number € > 0 there

exists a real number § > 0 (depending on both € and the point a) such that
|f(x) — f(a)] < € whenever |z —a| < ¢ and z € [a,b].

In terms of limit notion it means

lim f(z) = f(a).

T—a+
Similarly, f is said to be continuous at b if given any real number € > 0 there exists a real

number ¢ > 0 (depending on both e and the point b) such that
|f(z) — f(b)| < € whenever |z —b| < § and x € [a, b].
In terms of limit notion it means
i f(x) = (0).
Definition 2.2. Let A CR and let f: A — R. Then f is said to be continuous on A if and only if f
is continuous at each point of A.

Theorem 2.3. Composition of two continuous functions is continuous.

Proof. Let f: A— B and g : B — C be two continuous functions where f(A) C B. We want to show
go f: A— C is also continuous on A.

Let zp € A be an arbitrary point. Let € > 0 be any given real number. Then f is continuous at z(
and ¢ is continuous at f(zg) € B. So for € > 0 there exists a real number d; > 0 (depending on € and
f(zo) ) such that

lg(y) — g(f(20))| < € whenever |y — f(zo)| < d1 and y € B....... (1)

Let ¢ = 4;. Since f is continuous at xg, then for € > 0 there exists a real number § > 0 (depending

on ¢ and zo) such that
|f(z) — f(x0)] < € whenever |z — xo| <5 and z € A.......... (2)
Since f(A) C B, combining (1) and (2) it follows that
[g(f(2z)) — g(f(z0))| < € whenever |z — x| < ¢ and = € A.

= |(go f)(z) — (9o f)(zo)] < € whenever |z — zo| < d and z € A.

Therefore go f : A — C is continuous at xg € A. Since zy € A is arbitrary point, go f : A — C'is

continuous on A. Thus composition of two continuous functions is continuous. O
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Theorem 2.4. Let ACR and f: A — R. Then f is continuous at a point ¢ € A if and only if for

every sequence {xp}, T, € A with T, — ¢ as n — 0o, we get the sequence { f(x,)} converging to f(c).

Proof. Suppose f is continuous at ¢ € A. Let {x,} be a sequence converging to the point ¢, where
x, € A, for each n € N. We show that f(z,) — f(c) as n — oo.. Let € > 0 be an arbitrary real
number. Since f is continuous at ¢, for € > 0 there exists a real number § > 0 (depending on € > 0
and ¢) such that |f(z) — f(c)| < e whenever |zt — ¢/ <dandz € A............. (1)

Again x,, — ¢, as n — 00. So for § > 0, there exists a positive integer ng such that
|@p —c|<dforalln>mng.........oooune (2)

Combining (1) and (2) we get, |f(xn) — f(c)| < € for all n > ng. Therefore f(z,) — f(c) as n — co.

Conversely, suppose for every sequence {z,} of real numbers, z, € A with z,, — ¢ as n — oo, we
have f(z,) — f(c) as n — co. We want to show f is continuous at c. If possible, suppose that f is
not continuous at c. Then there exists an € > 0 such that for every § > 0 there exists a point x € A
for which |f(z) — f(c)| > € and |z — ¢| < 6. Let we take § = 2. Then for each positive integer n there
exists z, € A such that |f(z,) — f(c)| > cand |z —c| <6 =1.

Thus we get a sequence {z,} in A with 2, — ¢ as n — oo, whereas f(z,) 4 f(c) as n — oo. This is

a contradiction to our assumption. So f must be continuous at c. O

Discontinuity criterion:

Let ACR, let f: A— R and let ¢ € A. Then f is discontinuous at c if and only if there exists

a sequence {x,} in A such that {z,} converges to ¢ but the sequence {f(z,)} does not converge to

flo).
Question 2.5. Show that f : R — R defined by
f@) = 1, =z is rational
= 0, x is irrational

is discontinuous at every point of R.

Answer. Let ¢ be a rational point. Then f(c¢) = 1. Since in any interval there are infinite number of
rational as well as irrational numbers, for each positive integer n we can find an irrational number z,,
such that |z, —¢| < % Thus z,, = ¢ as n — oo. But f(z,) =0 4 f(c) =1, as n — oo. Therefore
f is not continuous at ¢. As ¢ is an arbitrary rational number, so f is not continuous at any rational
number.

Again let d be any irrational number. Then f(d) = 0. Since in any interval there are infinite number
of rational as well as irrational numbers, for each positive integer n we can find a rational number z,,
such that |z, — d| < 1. Thus x, — d as n — co. But f(z,) =17 f(d) =0, as n — cc. Therefore f
is not continuous at d. As d is an arbitrary irrational number, so f is not continuous at any irrational

number. Thus f is discontinuous everywhere.
Question 2.6. Let f: R — R be defined by
flx) = =z, xisirrational

= —x, x is rational
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Show that f is continuous only at x = 0.

Answer. Let ¢ be a rational number with ¢ # 0. Since in any interval there are infinite number of
rational as well as irrational numbers, for each positive integer n we can find an irrational number z,,
such that |z, —¢| < % Thus z,, — cas n — co. But f(z,) = z,, for all n and so f(z,) — casn — oco.
Since f(c) = —c¢, f(xn) # f(c) as n — oo. Therefore f is discontinuous at c. Hence f is discontinuous
at every non-zero rational points.

Let d be an irrational number. Then f(d) = d. Since in any interval there are infinite number of
rational as well as irrational numbers, for each positive integer n we can find a rational number z,,
such that |z, —d| < % Thus ,, — d as n — oo. But f(z,) = —x, for all n and so f(x,) = —d # f(d)
as n — o00. Therefore f is discontinuous at d. Hence f is discontinuous at every irrational points.

We now show that f is continuous at x = 0. Let € > 0 be any real number. then there exists a real

number § = € > 0 such that for all z € R,
|[f(x) — f(0)] = |f(x)] = |z| < € whenever |z — 0] < 4.
Therefore f is continuous at z = 0.
Question 2.7. Let f: R — R be defined by
f(x) = 0, z is irrational
= l, « is rational no. and z = #0,
n n
where n. > 0 and m,n are prime to each other
= 1, z=0.

Prove that f is continuous at every irrational point and that f has a simple discontinuity at every

rational point.

Answer. Let ¢ be an irrational number. Then f(c¢) = 0. Let € > 0 be any given real number. Then
by Archimedean property there exists a natural number ng such that n%) < e. There are only a finite
number of rationals with denominator less than ng in the interval (¢ — 1,c¢+ 1). Hence we can choose
¢ > 0 so small that neighborhood (¢ — 4, ¢ + d) contains no rational numbers with denominator less
than ng. So for all z € R and |z — ¢| < 0, we have
. . 1
@) = Fel = /@) < - <e

Therefore f is continuous at the point c. As ¢ is an arbitrary irrational number, f is continuous at all
irrational numbers.

Let d be a rational number. Then f(d) > 0. Since in any interval there are infinite number of rational
as well as irrational numbers, for each positive integer n we can find an irrational number x,, such that
|z, —d| < L. Thus z, — d as n — oo. But f(z,,) = 0 /4 f(d) as n — oo. Therefore f is discontinuous

at d. Hence f is discontinuous at every rational points.

Remark 2.8. Suppose f: A(C R) — R be any function and ¢ € A be a point, which is not a cluster
(limit) point of A. So there exists a § > 0 such that (¢ —d,c+ ) N A = {c}. Thus for given € > 0, we
have & > 0 such that |f(z) — f(c)| < ¢, whenever |z —¢| < § and & € A. So f is continuous at ¢ € A.
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Discontinuities:

(A) Removal discontinuity:

A function f: A(C R) — R is said to be removal discontinuous at x = ¢ if lim f(z) exists but f is not
r—c
continuous at = ¢. In this case, either f(c) is not defined or lim f(z) # f(c), when f(c) is defined.
Tr—c
Suppose lim f(z) = L. Then the function can be made continuous at x = ¢ either by assigning the
Tr—c

value L to the function at z = ¢ or by changing the value of the function at = ¢ to L.

Example 2.9.
e Let f:(0,1) — R be defined by f(z) = xsin % Then }1_% f(z) = 0. So by assigning the value
0 to f(0) we see that f is continuous at 0. Thus f has a removal discontinuity at = = 0.
e Let f:[1,3] = R be defined by

2% —4
f(“L) - x_27*L762
= 10, z=2.

Here hm2 f(z) =4 # 10 = f(2). By changing the value of the function at z = 2 from 10 to 4,
T—

i.e., f(2) = 4 we see that f is continuous at x = 2. Hence f is removal discontinuous at x = 2.

(B) Discontinuity of the first kind:
A function f: A(CR) — R is said to have a discontinuity of the first kind at 2 = ¢ if li,m, f(z) and

ZI_I)I?_F f(2) both exist but are not equal.

[ is said to have discontinuity of the first kind from the left at x = ¢ if lim f(x) exists but not equal
to f(c). o

f is said to have discontinuity of the first kind from the right at = c if ZI_I)I£1+]‘(I) exists but not

equal to f(c).

Example 2.10.
e Let f: R — R be defined by

fl)y = 3, 2>2

= 2, x=2

= 1, x<2.

Then Tli}gl+ f(z) =3 and Tlir;li f(xz) =1. So f has a discontinuity of the first kind at z = 2.
e f:R — R be defined by
fl@)=[z]VzeR,
where [z] denotes the largest integer less than or equal to z. Then f(z) is continuous at all
non-integral points. At an integral point x = n, Tll}£1+ f(z) = n and TLHJL f(z)=n—-1. S0
zLHBf f(z) # f(n) = n. Therefore f has a discontinuity of the first kind from left at all integral
points.
e Let f: R — R be defined by
x — |z

fla) = Z==, 240

T
= 2, 2=0.
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im f(z) = lim 2=2 — im f(z) = lim 2tz — i (0) =
Then Jﬂf(x) = zl;r{)lJr = 0 and m]ﬁl}%lﬁ f(x) zlir(r)li T 2. So Tlir&f(r) # f(0) = 2.
Therefore f has a discontinuity of the first kind from right at z = 0.

(C) Discontinuity of the second kind:
A function f : A(C R) — R is said to have a discontinuity of the second kind at z = ¢ if neither

lim f(z) nor lim f(z) exists.
r—c— r—c+
f is said to have discontinuity of the second kind from the left at = ¢ if lim f(z) does not exist.
Tr—rc—

f is said to have discontinuity of the second kind from the right at = ¢ if lim+ f(z) does not exist.
T—rC

Example 2.11.
e Let f:R — R be defined by

flz) = sinl, z#0
x
= 5, z=0.

Then li%l+ f(z) and li%l f(z) both does not exist. Therefore, f has a discontinuity of the
z— z—0—

second kind at z = 0.
e Let f:RTU{0} = R be defined by

f@) = —sin—, >0

Then li%lJr f(z) does not exist and so f has a discontinuity of the second kind from right at
T
z=0.

(D) Infinite discontinuity:
Let f: A(CR) — R. Then f is said to have an infinite discontinuity at x = ¢ if f is not bounded on

any neighborhood of c.

Example 2.12.
e Let f:RT — R be defined by

f(z) =logz, > 0.

Then lir(r]1+ f(z) = —oc0 and so f has infinite discontinuity at x = 0.
T

e Let f:RT — R be defined by
T pol T .

Then 1i161+ f(z) = 0o and so f has infinite discontinuity at z = 0.
r—

e Let f:RT — R be defined by

f) =1

1
Slnf‘, x> 0.
z

Then lir(r]1+ f(z) does not exist but f is not bounded on any neighborhood of z = 0.
T
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(E) Jump discontinuity:

Let f: A(CR) — R. Then f is said to have a jump discontinuity at = c if llm f(z) and lim+ f(z)
xT c— xT—rc
exist and 111117 flz) # ILer f(z). The jump of f at c is defined as

Ji(e) = flet) = fle-).

Clearly f has a removal discontinuity if J¢(c) = 0 and jump discontinuity if Jy(c) # 0.

Let f: [a,b] = R.If :v1~>h(11,1+ f(z) exists but not equal to f(a) then we say that f has a right hand jump
at = a, the jump of f being f(a+) — f(a).

Let f:[a,b] — R. If Tlir}}i f(z) exists but not equal to f(b) then we say that f has a left hand jump
at x = b, the jump of f being f(b) — f(b—).

Example 2.13. Let f : [1,2] — R be defined by

f(x)

4, z €[1,1.5)
= 3, 2=15
= 2, ze(15,2.

Then f has a jump discontinuity at x = 1.5.

Question 2.14. Let a < b < c. Suppose f is continuous on [a,b] and g is continuous on [b,c] and
f(b) = g(b). Define h on [a,c] by h(z) = f(x) if x € [a,b] and h(z) = g(z) if © € [b,c]. Prove that h

continuous on [a, c|.

Question 2.15. Determine the points of continuity of the following functions:
(1) f(z) = z[z]; z €R, (it) g(x) = [sinz]; = € R,
(ii1) Mz) = [2]; 2 #0,2 € R, () k(z) =2 — [z]; x € R.

x

Theorem 2.16. Let f : K — R be a continuous function and K C R be compact set. Then f(K) is

compact set in R.

Proof. Let {y,} be a sequence in f(K). Then for each positive integer n there exists a real number
zn € K such that f(z,) = yn. As K is compact, {z,} C K has a convergent subsequence {z, }
converging to some point, say € K. As f is continuous, z,, — z implies f(z,,) — f(z) € f(K),
as k — oo. Therefore, y,, converges to f(z) € f(K). Since {y,} is arbitrary sequence, f(K) is

compact. 0O

Theorem 2.17. Let f : R — R. Then f is continuous if and only if f~*(G) is open set in R for
every open set G in R.

Proof. Let f : R — R be continuous. We want to show f~!(G) is open set in R, i.e., every point
in f~1(@) is an interior point. Let 29 € f~1(G) = {z € R: f(z) € G}. Then f(x9) € G. As G is
open, there exists a real number € > 0 such that (f(x¢) — ¢, f(zo) + €) C G. Since f is continuous, for
€ > 0 there exists 6 > 0 such that f(x) € (f(xo) — ¢, f(xo) + €) whenever x € (¢ — 0,29 + J). Hence
fxo—0,20+8) C (f(z0) —¢, f(wo)+¢) C G, e, (z0—8,x0+0) C f~(f(z0) —¢, f(z0)+¢) C F71(G).
Therefore, z¢ is an interior point of f~1(G). So, f~1(G) is open set in R, as x( ia an arbitrary point.
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Conversely, let f~1(G) be open set in R for every open set G in R. We want to show f is continuous.
Let 29 € R be arbitrary and let € > 0 be given any real number. Then (f(zo) —¢, f(z0) +€) be a open
set containing f(zo). Then f~1(f(z0) — €, f(z0) +€) is open in R and xo € f~1(f(z0) — €, f(z0) + €).
Therefore, there exists a real number ¢ > 0 such that (zg — 6,29 +6) C f~1(f(w0) — €, f(20) +€), i.e.,
flxo — 0,20 +0) C (f(xo) — ¢, f(xo) +€). Hence f is continuous at zg. So f is continuous on R, as xg

is an arbitrary point. O
Theorem 2.18. Let f : [a,b] = R be a continuous function. Then f is bounded.

Proof. We want to show that there exists a constant k > 0 such that |f(z)| < k for all z € [a,b]. If
possible let f be not bounded on [a, b]. Then for each positive integer n we can find a point z,, € [a, b]
such that f(z,) > n. Since [a,b] is bounded, the sequence {z,} is bounded. By Bolzano-Weierstrass
Theorem {z,,} has a convergent subsequence {z,,} converging to some point, say x. Since the set
[a,b] is closed and all the elements of the sequence {z,,} belong to [a,b], we get = € [a,b]. Now f
is continuous at x and {z,,} converges to x. So, we must have {f(z,,)} converges to f(z). Thus
{f(zn,)} being convergent is bounded. But |f(z,,)| > ng > k for all k = 1,2,..., which contradicts
the fact that {f(xn,)} is bounded. Hence the supposition that f is not bounded is wrong. So f is
bounded on [a, b]. O

Remark 2.19. The Theorem 2.18 does not hold if the closed interval [a, b] is replaced by a non-closed

interval.

Example 2.20. Let f:(0,1) — R be defined by f(z) = % Then clearly f is continous on (0,1) but
f is not bounded on (0, 1).

Theorem 2.21. A function f, continuous on [a,b], attains its bounds at least once in [a,b].

Proof. Since f is continuous on [a, b], it is bounded on [a, b], i.c., the set {f(z) : @ < & < b} is bounded.
So the set {f(z) : a < z < b} has a supremum and a infimum which we denote by sup f and inf f
respectively.

We want to show that there exist points ¢, d in [a, b] such that f(c) = sup f = sup{f(z):a <z < b}
and f(d) = inf f = inf{f(z) : a < 2 < b}. We first prove the result for sup f. let M = sup f. If possible
let there exists no « € [a,b] such that f(z) = M.

Then consider the function g : [a,b] — R defined by g(z) = M — f(x) for all x € [a,b]. Clearly g is
continuous on [a, b] and g(x) > 0 for all z € [a, b]. So % is also continuous on [a, b] and hence bounded

on [a,b]. Thus there exists a constant k > 0 such that
1
—(x) < kforall zela,b]
g
1
=g(x) > T for all z € [a, ]
= M- f(z) > % for all z € [a, b]
1
= fle) < M- T for all z € [a, b].

Thus we get a contradiction to the fact that M = sup f. Therefore, there exists at least one z € [a, b]

for which f(z) = M. Thus f attains its supremum at least once in [a, b].
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The result for infimum follows as a consequence because the infimum of f is the supremum of —f.

This completes the proof of the theorem. ]

Remark 2.22. If a function f is continuous on [a,b], then there exist points ¢,d € [a, b] such that
m = £(c) < () < £(d) = M for all z € [a,1]. So f([a,b]) € [(0), (@)

Remark 2.23. The Theorem 2.21 does not hold if the closed interval [a, b] is replaced by a non-closed

interval.

Example 2.24. Let f : (0,1) — R be defined by f(z) = 2% Then f is bounded on (0,1) as
0 < f(z) < 1forall z € (0,1). Also sup f = 1 and inf f = 0. Hence f does not attain its bound on
(0,1).

Theorem 2.25. Let f : [a,b] — R be a continuous function on [a,b]. If f(a)f(b) < 0, then there
exists ¢ € (a,b) such that f(c) = 0.

Proof. We assume that f(a) < 0 < f(b). We will generate a sequence of intervals by successive
bisections. Let I} = [a1,b;], where ay = a, by = b. Let p; be the midpoint of a; and by, i.e.,
P = %(a,l +b1). If f(p1) = 0, we take ¢ = p; and we are done. If p; # 0, then either f(p1) > 0 or
f(p1) <0.If f(p1) > 0, then we set as = ay, be = p1, while f(p1) < 0, then we set ay = p1, by = by.
In either case, we let Iy = [ag, bo]. Then we have Iy C I and f(a2) <0, f(b2) > 0.

We continue the bisection process. Suppose that the intervals Iy, Io, ..., I; have been obtained by
successive bisection in the same manner. Then we have f(ay) < 0 and f(by) > 0 and we set p, =
%(ak +bg). If f(pr) =0, we take ¢ = py and we are done. If py, > 0, then we set ax+1 = ag, bp+1 = Pk,
while f(pr) < 0, then we set ar4+1 = pg, br+1 = by. In either case, we let Iy11 = [ak+1,bk+1]. Then
we have I 11 C Iy and f(ar+1) <0, f(bgg1) > 0.

If the process terminates by locating a point p,, such that f(p,) = 0, then we are done. If the process
does not terminate, then we obtain a nested sequence of closed bounded intervals {I,} = {[an,b,]}
such that for every n € N we have f(a,) < 0 and f(b,) > 0. Furthermore, since the intervals are
obtained by repeated bisection, the length of I, is equal to (b, —a,) = (zb[fll) . It follows from the Nested
Intervals Property that there exists a point ¢ that belongs to I, for every n € N. Since a,, < ¢ < b,

for all n € N, WehaveOScfanSbnfan:%andogbnfcgbnfan:g’[—fﬁ). Hence, it

follows that lim (a,) =c¢= lim (b,). Since f is continuous at ¢, we have
n—o0 n—00

Jim (f(an)) = f(e) = lim (f(bn)).

The fact that f(an) < 0 for all n € N implies that f(c) = lim (f(an)) < 0. Also, the fact that
n—00

f(by) > 0 for all n € N implies that f(c) = li_)m (f(bp)) > 0. Thus, we conclude that f(c) = 0. O

Theorem 2.26. (Bolzano’s Intermediate Value Theorem)
Let I be an interval and let f : I — R be continuous on I. If a,b € I and if k € R satisfies
f(a) <k < f(b), then there exists a point ¢ € I between a and b such that f(c) = k.

Proof. Suppose that @ < b and let g(z) := f(x) — k. Then g(a) < 0 < g(b). By the Theorem 2.25 there
exists a point ¢ with @ < ¢ < b such that 0 = g(¢) = f(c) — k. Therefore f(c) = k.
If b < a, let h(z) :=k — f(x) so that h(b) < 0 < h(a). Therefore there exists a point ¢ with a < ¢ <b
such that 0 = h(c) = k — f(c). Therefore f(c) = k.

O
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Monotone and Inverse functions:

Monotone functions are not always continuous.
Example 2.27. Let f: [0,3] — R be defined by

fl@) = 2, z€]0,2]
= 3, ze(23).

Then clearly f is increasing on [0, 3] but f is not continuous at z = 2, as f(2—) = 2 and f(2+) = 3.

The next theorem shows that monotone functions defined on interval always has one sided limits

in R at every point that is not an end point of its domain.

Theorem 2.28. Let f : [a,b] = R be an increasing function and c € (a,b). Then
(@) fle=) =sup{f(z) :a <w < c}
(2) f(e+) =inf{f(z):c <z <b}.

Proof. Clearly for a < z < ¢, we have f(z) < f(c). So the set {f(z) : a <z < ¢} is bounded above by
f(c). Hence sup{f(z) : a < x < ¢} exists. Let M =sup{f(z):a <z <c}.

Let € > 0 be any given real number. Then there exists an element z., a < z. < ¢ such that
M—e< f(ze) < M. Let 6 = ¢ — x.. Then § > 0. Now for all € (¢ — d,¢) and z € [a,b] we have
z. <z < cand a <z < b. Therefore, we have M —e < f(z.) < f(x) <M < M+e=|f(x)— M| <e
Thus |f(z) — M| < € whenever = € (¢ — J,¢) N [a, b]. Therefore,

zlgilf f(@) =M =sup{f(z):a <z <c}
Similarly, one can show that zlgg_ f(z) =inf{f(z):c <z <b}. O
Note. The result holds for any non-closed interval also.
Theorem 2.29. Let f : [a,b] = R be a decreasing function and c € (a,b). Then
(i) fle=) = Jim f(@) = nf{f(z) :a <2 <c}
() flet) = Jim 1) =sup{f(a) : e < o < b}

Remark 2.30. From the last two theorems it follows that monotonic functions have no discontinuities

of the second kind.

Theorem 2.31. Let f be monotonic on (a,b). Then the set of points of (a,b) at which f is discon-

tinuous is countable.

Proof. Suppose that f is increasing on (a,b). Let D be the set of points at which f is discontinuous.
Then with every point  of D we associate a rational number r(z) such that f(z—) < r(z) < f(z+).
Now for any two points z1,22 € D with z1 < xg, we have f(z1+) < f(z2—). So r(x1) # r(za) if
1 # x2. Thus there exists a one-one correspondence between the set D and a subset of rational

numbers. As the set of rational numbers is countable, D is also countable. O
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Theorem 2.32. (Continuous Inverse Theorem)
Let I C R be a closed and bounded interval and let f : I — R be strictly monotone and continuous on

1. Then the function g, inverse of f is strictly monotone and continuous on J = f(I).

Proof. Suppose f is strictly increasing on I and also suppose I = [a,b]. Since [ is continuous on [a, b],
there exists points ¢,d € [a,b] such that f(c) = inf{f(z) : a <z < b}, f(d) = sup{f(z):a <z < b}
and f([a,b]) = [f(c), f(d)]. Thus range of f is also a closed and bounded interval. We now show that
7Y 0f(e), f(d)] — [a,b] exists.

Let @1, 9 € [a,b] and x1 # xo. If 1 < 2, then f(z1) < f(z2). If 22 < @1, then f(z2) < f(z1). Thus
in both cases f(z1) # f(x2). So, f is injective. Thus f : [a,b] = [f(c), f(d)] is a bijective function.
Hence f~! exists. Let f~' =g.

We now show that g is strictly increasing. For this let y1,y> € [f(c), f(d)] and y1 < yo. Then there
exist x1, 3 € [a,b] such that f(z1) = yi1, f(22) = yo. As f is strictly increasing, we must have z; < x,
otherwise if ;1 > @9 then f(z1) > f(z2) = y1 > ya, which contradicts the fact that y; < yo. Therefore
y1 <y2 = g(y1) = 1 < x3 = g(y2). So, g is strictly increasing.

Finally we show that g is continuous on [f(c), f(d)]. If possible suppose that g is not continuous at some
point yo € [f(c), f(d)]. Then ylg};_g(y) < yggr;+g(y)7 as g is strictly increasing. Choose a number
z # g(yo) such that g(yo—) < = < g(yo+). Then z # g(y) for any y € [f(c), f(d)]. Hence = & [a,b].
This contradicts the fact that g([f(c), f(d)]) = [a,b] is an interval. Therefore ¢ is continuous. O

Theorem 2.33. Let I C R be a closed and bounded interval and let f : I — R be an injective

continuous function on I. Then f is strictly monotone on I.

Proof. Suppose I = [a, b]. Since f is injective on [a, b], we must have either f(a) < f(b) or f(a) > f(b).
Suppose that f(a) < f(b). We then show that f is strictly increasing on [a,b]. Let = € (a,b). If
f(z) < f(a) < f(b), then by applying Bolzano’s intermediate value theorem to the function f on
[x,b], we get a point @’ € (z,b) such that f(a) = f(a’). This contradicts the fact that f is injective.
So the relation f(z) < f(a) can’t hold.

Simliarly if f(a) < f(b) < f(z), then by applying Bolzano’s intermediate value theorem to the function
f on [a,x], we get a point b’ € (a, ) such that f(b) = f(b'). This contradicts the fact that f is injective.
So the relation f(b) < f(z) can’t hold.

Thus f(a) < f(z) < f(b) for all z € (a,b). Now let y € (a,b) and & < y. Then f(a) < f(y) < f(b).
If f(a) < f(y) < f(x), then by preceding arguments there exists y' € (a,z) such that f(y) = f(v'),
which contradicts the fact that f is injective. Therefore f(y) > f(z). Then for z,y € (a,b), with
x <y, we get f(x) < f(y). Hence f is strictly increasing on [a, b].

Similarly if f(a) > f(b), then we can show that f is strictly decreasing on [a, b]. O

3. Uniform Continuity

Definition 3.1. Let A C Rand let f: A — R. We say that f is uniformly continuous on A if for each
€ > 0 there exists § > 0 (depending on €) such that if z,y € A are any numbers satisfying |z — y| < 4,
then |f(z) — f(y)| <e.
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Theorem 3.2. Let ACR and let f: A— R. Then the following statements are equivalent:
(2) f is uniformly continuous on A.

(ii) Bvery pair of sequence {x,} and {yn} in A with ILm (zn—yn) = 0 implies le (f(xn)—f(yn)) = 0.

Proof. (i) = (ii). Assume f is uniform continuous on A and suppose {z,,} and {y,} are sequences in
A with lim (2, —y,) = 0. Here, we prove that the sequence {f(z,) — f(yn)} converges to 0.

Let € >n80103e given. Then by the definition of uniform convergence, there exists 6 > 0 such that
|f(z)—f(y)|] < € whenever |r—y| < § and z,y € A. Now we apply the definition of convergent sequence
for the given ¢ > 0 to obtain a natural number K (d) such that if n > K () then |(z, —yn) — 0] < 4.
But for each such (x, — yn), we have |f(zn) — f(yn)| < €. Thus if n > K(0), then |f(xn) — f(yn)] < e
Therefore, the sequence {f(z,) — f(yn)} converges to 0.

(#4) = (4). If possible, suppose that (i) is not true. Then there exists an € > 0 such that for every
6 > 0 there exists points xs5,ys € A, such that |zs — ys| < 0 and |f(z5) — f(ys)| > €. Let we take
6= % Then for each positive integer n, there are points x,,y, € A, such that |f(z,) — f(yn)| > €
and |z, — yn| <6 = 1.

Thus, we get two sequences {z,} and {y,} in A with (z,, — y,) — 0 as n — oo, whereas (f(z,) —
f(yn) # 0 as n — oco. Therefore we have shown that if (7) is not true, then (4¢) is not true. Thus we

conclude that (i4) implies (7). O

Example 3.3.

x

= 1 i _ = i — = -
{yn} = {n”} . Then nhﬁnio(icn yn) =0, but nhﬁrgo(f(rn) f(yn)) = 1. Therefore by Theo

rem 3.2, we conclude that f is not uniformly continuous on (0, 1).

e Let f: (0,1) — R be defined by f(z) = L. consider two sequences {z,} := {%ﬂ} and

e Let g : (0,1) — R be defined by g(x) = sin(2). consider two sequences {z,} := {ﬁ}
and {y,} = {-£}. Then lim (z, — y,) = 0, but lim (f(2,) — f(ys)) = 1. Therefore by
n—o0 n—o00

Theorem 3.2, we conclude that g is not uniformly continuous on (0, 1).

e Let f : R — R be defined by h(z) = z2. consider two sequences {z,} := {n+ 1} and
{yn} :={n}. Then lim (z, —y,) =0, but lim (f(z,) — f(yn)) = 2. Therefore by Theorem
n—oo n—oo

3.2, we conclude that h is not uniformly continuous on R.

Theorem 3.4. Let I C R be a closed and bounded interval and let f : I — R be continuous on I.

Then f is uniformly continuous on I.

Proof. If f is not uniformly continuous on I, then there exists an € > 0 and two sequences {z,} and
{yn} in I such that |z, — yn| < 2 and |f(2,) — f(yn)| > € for all n € N. Since I is bounded, the
sequence {z,} is bounded. Therefore, by the Bolzano-Weierstrass Theorem there is a subsequence
{2, } of {z,} that converges to a point x. Since I is closed, the limit x belongs to I. Hence the

corresponding subsequence {y,, } also converges to z, since

|y'rbk - I‘ < ‘ynk - x7lk| + ‘x”k - ‘l‘
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Now, if f is continuous at the point z, then both the sequences {f(z,,)} and {f(yn,)} must converge

to f(z). But this is not possible, since

[f(zn) = fyn)l Z €

for all n € N. Thus the hypothesis that f is not uniformly continuous on the closed bounded interval
I implies that f is not continuous at some point « € I. Consequently, if f is continuous at every point

of I, then f uniformly continuous on I. O

Definition 3.5. (Lipschitz Functions)
Let ACR and let f: A — R. If there exists a constant K > 0 such that

|f(2) = F(y)l < K|z —y]

for all z,y € A, then f is said to be a Lipschitz function (or to satisfy a Lipschitz condition) on A.
Theorem 3.6. Ia f: A — R is a Lipschitz function, then f is uniformly continuous on A.

Proof. Since f is a Lipschitz function, there exists K > 0 such that

If(z) = f(y)| < K|z -y

for all 2, € A. Now, for given any ¢ > 0, we can take § = &. If z,y € A satisfy |x — y| < 4, then
|f(z) = f(y)] < K+ = €. Therefore f is uniformly continuous on A. O

Example 3.7. If f(z) = 22 on A = [0,b], where b > 0, then

[f(x) = fF)l = |2* = y?| = |z + yllz — y| < 26|z —y|
for all z,y € A. Thus f satisfies Lipschitz condition with K = 2b. Therefore f is uniformly continuous
on [0,b] by Theorem 3.6.

Remark 3.8. The converse of the Theorem 3.6 is not true in general.

Example 3.9. Let f(z) = \/z, on the bounded and closed interval I = [0,2]. Then by Theorem 3.4,
f is uniformly continuous on [0, 2], but f does not satisfy Lipschitz condition on [0, 2], as
@) = F@) = We = Vil = 122 S o, as a,y 0.
VI + Y
Definition 3.10. (Cauchy Sequence)
A sequence {z,} C R is said to be Cauchy sequence if for given € > 0 there exists K € N (depending

on €) such that |z, — z,| < €, whenever m,n > K.

Theorem 3.11. If f : A — R is uniformly continuous on a subset A of R and {x,} is a Cauchy

sequence in A, then {f(x,)} is a Cauchy sequence in R.

Proof. Let {x,} be a Cauchy sequence in A and let € > 0 be given. First choose § > 0 such that if
z,y € A satisfy |z —y| < ¢, then |f(z) — f(y)| < e. Since {z,} is a Cauchy sequence, there exists
K € N (depending on d) such that |z, — z,,| < §, whenever m,n > K. By the choice of ¢, this implies
that for m,n > K, we have |f(z,,) — f(z,)| < €. Therefore {f(z,)} is a Cauchy sequence in R. O
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Example 3.12. Let f : (0,1) — R be defined by f(z) = 2. Consider the sequence {z,} = {735}
in (0,1). The sequence {z,} = {27} Cauchy in (0,1), but the sequence {f(zn)} = {n + 1} is not

Cauchy in R. Hence, by Theorem 3.11, we conclude that f is not uniformly continuous on (0,1).

Theorem 3.13. A function f: R — R is uniformly continuous on the interval (a,b) if and only if it

can be defined at the end points a and b such that the extended function is continuous on [a,b].

Proof. “If 7 part easily follows from Theorem 3.4.

Here, we prove the °

“only if 7 part of the theorem. Suppose f is uniformly continuous on (a,b). We
shall show how to extend f to a continuously; the argument for b is similar. This is done by showing
that lim f(x) = L (say) exists and this is accomplished by using the sequential criterion for limits. If
{xn}alzg sequence in (a,b) with 7Lli%rrolo z, = a, then it is a Cauchy sequence. By the Theorem 3.11,
the sequence {f(zy)} is a Cauchy sequence. We know that a sequence in real numbers is convergent
if and only if it is a Cauchy sequence. Therefore the limit lim f(z,) = L (say) exists. If {y,} is
any other sequence in (a,b) that converges to a, then nlgxolo (1/7;_) = Zy) = a—a =0, so by the uniform

continuity of we have

lim f(y,) = 7}51010(]0(1/71) = f(zn)) + nlLHOIO flan)=0+L=L.

n—r0o0
Since we get the same value L every sequence converging to a, we infer from the sequential criterion
for limits that f has limit L at a. Now, if we define f(a) := L, then f is continuous at a. The same
argument applies to b, so we conclude that f has a continuous extension to the interval [a, ].

This completes the proof of the theorem. O

Example 3.14.

e Since the limit of f(z) := sin(2) at 0 does not exists, we infer from the Theorem 3.13 that

the function is not uniformly continuous on [0,b] for any b > 0.

e On the other hand, since lin%]zsin(%) = 0 exists, the function g(z) := xsin(L) is uniformly

T—
continuous on [0,b] for any b > 0, by Theorem 3.13.

DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA 700032, INDIA

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

23



Sayan Das (July 6, 2024) Theory of Real Functions

§2 Limit and Continuity Exercises

cont.

Problem 2.1. Let f: R — R s.t. f(z) =0 for all z € Q. Then prove that f(z) =0
for all z € R.

Proof. Suppose f: R o R. Assume, towards a contradiction, that there exists an

20 € QC s.t. f(wo) # 0, then d := |f(xo)| > 0; take e = d/2 > 0. As f is continuous
on R, thereisa d > 0:|f(z) — f(zo)| < d/2 for all x : |z — zo| < 0.

As Q is dense in R, there is some x € Q : |z — x¢| < I
= [f(z) — f(zo)| < d/2

ZEY 0 < d = 10— flwo)| < d/2.
Absurdity.

Thus there is no z € QF such that f(z) # 0, so f(x) = 0 for all z € R. O

cont.

Problem 2.2. Let f,g: R — R s.t. f(x) = g(x) for all z € Q. Does it imply f =g
on R ? Same question for QB instead of Q.

Proof. The rationals are dense in R, so for every ¢ € R there exists a sequence of
rationals (zp,),>1 converging to c¢. f, g continuous on R implies that f(x,) = f(c)
and g(x,) — g(c).

But f(x) = g(x) for all rational z, so f(z,) = g(z,) for all n € ZT, whence

fle)= lim f(z,) = lim g(zn) = g(c) Ve €R.

n—00

Here we have only used the fact that the rationals are dense in R. As the irrationals
are also dense in R, the same result holds if we replace Q with @E. O

cont.

Problem 2.3. Let f,g: R — R s.t. f(z) = g(x) for all z € D where D is a dense
subset of R. Does it imply f =gon R ?

Proof. Yes. As D is dense in R, for every ¢ € R there exists a sequence (zy,)n>1 of
elements in D converging to c. f, g continuous on R implies that f(z,) — f(c) and

9(zn) = g(c).
But f(z) = g(x) for all x € D, so f(z,) = g(z,) for all n € ZT, whence

fle) = lim f(zn) = lim g(zn) = g(c) Ve R,

n—oQ

O

Problem 2.4. Let f,g: R O R .t f (2%) = 0 for all m,n € Z. Does it imply f =0
on R ?
Proof. To show f = 0 on R it suffices to show that the set of dyadic rationals
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S = {E tm,n € Z+} is dense in R. For any = € R,

2’”
[2"z] 2"z [2"z] +1
[2"x] 1
[2"x]
- |T — on <e€

Thus, for every x € R there is a sequence (D;f]) . of dyadic rationals converging
n

to x. Thus, S is dense in R, which, together with_f (2%) = 0 for all integers m,n,
implies that f =0 on R. 0

cont.

Problem 2.5. Let f,g: R — R s.t. f (m + n\/§) =0 for all m,n € Z. Does it imply
f=0onR?

Proof. To show f =0 on R it suffices to show that S = {m +nV2:m,n e Z+} is

dense in R. Now (S, +,-) is a ring. Every additive subgroup of R with arbitrarily
small positive elements, i.e with limit point 0, is dense in R. As (S, +) is a subgroup
of R, we only need to show that 0 is a limit point of S.

Note that (S, 4+, -) is a ring, so it is closed under multiplication and addition.

0<\/§—1:—1+\/§<—1+g=%
— 0<(—1+\/§)"<2in:g vn € 7+
- ‘(—1—1—\/5)" <e
= Ji_{go(—lJr\/i)":O.
Which proves thathOOHRan(m—l—n\/é) = 0 for all integers m,n. O

cont.

Problem 2.6. Let f,g: R — R s.t. f(m+na) =0 for all m,n € Z where a € Qt.
Does it imply f =0on R ?

Proof. To show f = 0 on R it suffices to show that S = {m +no:m,n € Z+} is

dense in R.
fractional part

—_
na = [nal +  {na}

so if we can show that T = {{na} : n € Z} is dense in R then we’ll have proved
that S is dense in R. Now (7, +,-) is a ring. So, as in the preceding problem, we
only need to show that 0 is a limit point of 7.

Now for each k = 0,1,...,n € Z* we have {ka} € [0,1). Write

0,1) = [O,D U [;i) U---U [”;1,1>
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as the union of n subintervals of length % But k can take n + 1 possible values, so
{ka} can take n + 1 values in the interval [0, 1). Thus, by the Pigeonhole Principle,
there exist i,j € Z : 0 < i < j < n such that {ia}, {ja} lie in the same interval.
Thus,

16 = Dal = |{ja} - {ia} < = Vn € 2+

= [{na}| <e
= lim {na} =0.
n—oo

Which proves that f =0 on R as f (m + na) = 0 for all integers m, n. O

Problem 2.7. Give examples of f,¢g: R — R s.t. f, g are discontinuous at a pt. xg but
(i) f+g
(i) f—g
(iii) fg
is continuous at xg.

Proof. (i) f =sgn, g = —sgn are discontinuous at 0 but f + g = 0 is continuous
at 0 (in fact everywhere).

0,$¢Q _17$¢@
, 9(z) =
1, z€Q 0, z€Q

are comtinuous nowhere

(if) f(z) = {

but f — g =1 is continuous everywhere.

1, z2>1 0, z>1
iii z) =<’ , g(x) =< is discontinuous at 1 but =01is
(i) f(2) {ngl o) {Lxgl g

continuous at 1 (in fact everywhere).

O]

Problem 2.8. Let f,g: R — R s.t. f, g are continuous at xg. Show that f+g, f—g, fg
are continuous at zg. If g # 0 then show that f/g is continuous at x.

Proof. Let (ay) be a sequence in R converging to xo. Then, as f, g are continuous,
flan) = f(zo), g(an) — g(xo). Thus from the properties of convergent sequences,

(f +9)(an) = (f + 9)(w0), (f —9)(an) = (f — 9)(20),
(f9)(an) = (fg)(z0), andif g #0, (f/g9)(an) = (f/g)(=0).

And sequential continuity is equivalent to € — § continuity. O

Problem 2.9. (a) Let f,g,h:R — R s.t.

0,2¢Q
0,$¢Q O)£¢Q
ﬂ@z{Ler , mwz{%xe@ - Mo fhemteov
y L=

Show that f is continuous nowhere, g is continuous only at 0 and h is continuous
only at irrational points.
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(b) Prove that

: 2m
W%gnoo(cos(wx))

exists for all z € R and

1 Z
lim (cos(wx))*™ =< ve
m—00 0, = ¢ 7
(c) Prove that

lim ( lim (cos(n!mc))Qm)

n—oo \m—oo

exists for all x € R and

lim ( lim (cos(n!ﬂ'x))Qm) _ {1, zeQ

0,z¢Q

n—oo \m—oo
Also discuss the continuity of the limit functions.

Proof.  (a) Dirichlet’s function f is continuous nowhere. For, let z € R. If z € Q,
then f(z) = 1. Choose ¢ = 1/2. Then for any 6 > 0 we can always find an
irrational 2’ (irrationals are dense in R) s.t.

7' —z| < = |f(@) - f@)|=0-1]>1/2=e.

Similarly, if ¢ Q then f(x) = 0 so picking ¢ = 1/2 again, for any 6 > 0 we
can always find a rational 2’ (rationals are dense in R) s.t.

7' —z2| <6 = |f(&) - fl@)|=11-0|>1/2=c¢.

Thus, f is continuous nowhere.

The function g(z) = xf(x) is only continuous at 0. Let z € R\ {0}. If z € Q,
pick some € = |z| > 0. Then for any § > 0 we can always find an irrational z’
s.t.

|2 — x| <6 = |g(z') —g(x)| = 10— 2| = |a| > |a| = .

Similarly, if ¢ Q, pick some € = |z| > 0. Then for any § > 0 we can always
find a rational 2’ > |z| s.t.

' — 2] <0 = |g(z') —g(2)| =2 = 0] =2’ > |z = .

Now let = 0. Let £ > 0. Choose § = min(e,1) > 0. For any 2’/ € (—=4,0) N Q
we have |g(z/)] = || < 8 < ¢, and if 2’ € (—6,6) N QL then we trivially have
lg(z")] = 0 < e. Thus for any § > 0, we have

7’| <6 = |g(z')| <e.

So g is continuous only at 0.

Thomae’s function h is continuous only at the irrationals. Let ¢ = 7% € Q
with ged(m,n) = 1. There exists a sequence (z,) of irrational numbers in
R converging to c. Hence, h(z,) = 0 while h(c) = . This shows that h is
discontinuous at c. Now let ¢ be irrational and let ¢ > 0 be arbitrary. Let
N € N be such that % < e. In the interval (¢ — 1,¢ + 1), there are only a
finite number of rationals 7 with n < N, otherwise we can create a sequence
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Mk with n, < N, all the rationals 7* distinct and thus necessarily = is
k Nk

unbounded. Hence, there exists 6 > 0 such that the interval (¢ — d,c + )
contains only rational numbers z = * with n > N. Hence, if z = 7 €
(c—8,c+0) then h(z) = £ < % and therefore |h(z) —h(c)| =1 < & <e. On
the other hand, if x € (¢—0, ¢+ ) is irrational then |h(z) —h(c)| = |0—0] < e.

This proves that f is continuous at c.

(b) For any m € Z, we have 0 < cos(mz)?™ < 1. Now, cos(mz) = %1 for integer
r, so that cos(mx)?™ = 1. If = is not an integer, we have

2

0 < cos(mz)®™ <1 = 0 < cos(mz)2" V) < cos(rz)? < 1

so that for x ¢ 7 the sequence (cos(mc)Qm)m cz+ 18 decreasing and bounded
below by 0, so

1, seZ
lim (cos(nz))?™ = 4 © €
m—00 0, z ¢ 7,

(¢) Let p = nlz. Then the inner limit is 1 iff p is integer, and p is an integer iff

a
r=—, a€Z.
n!

As n — 0o, x ranges over all possible rational values. So the double limit is 1
iff x € Q. Likewise, it is 0 iff z ¢ Q. Now, let

f(z) = lim ( lim (cos(n!wx))2m> — {1’ ze€Q ’

n—00 \Mm—o00 0’ T ¢ Q

then f is another form of Dirichlet’s function which, as we’ve proved above,
is continuous nowhere.

O]

cont.

Problem 2.10. Let S be closed in Rand f: S — R. Let A = {x € S: f(x) = 0}.
Show that A is closed in R.

Proof. f is continuous so K closed in R = f~!(K) closed in S, and if K is
closed in a closed subset of R then K is closed in R, so K is closed in R as §' is
closed in R. Now, {0} is closed in R so f~1({0}) = A is closed in R, and thus A is
closed in R. O

cont.

Problem 2.11. Let f,g: R — R.

(i) Show that G = {x € R: f(x) > 0} is open in R.
) Show that F'= {z € R: f(z) = 0} is closed in R.
) Show that F'={z € R: f(z) <0} is closed in R.

(iv) Show that G = {z € R: f(z) > g(x) + ¢} is open in R for fixed ¢ € R.
) Show that F'={z € R: f(z) < g(z) + ¢} is closed in R for fixed ¢ € R.
)

Show that S1 = {z € R:e®* > 1}, Sy = {x € R : sin(z) < 1} are open in R
whereas S5 = {z € R: e* = cosz}, Sy = {z € R :sin(z) 4+ 2 cos(xz) > 2} are closed
in R.
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One can replace the > by < and < by > in the above results.
Proof. 1. (0,00) is open in R so G = f~1 ((0,00)) is open in R.
2. {0} is closed in R so F' = f~!({0}) is closed in R.
3. (—00,0] is closed in R so F = f~1 ((—o00,0]) is closed in R.
4. h = f — g is continuous and G = {z € R: f(z) > g(x) + ¢}
={z eR:h(x)>c}
so G =h7!((c,00)) is closed in R.
5. h = f — g is continuous and F = {z e R: f(z) < g(x) + ¢}
={z eR:h(x) <c}
so F =h!((—o0,c]) is closed in R.

6. fi(z) =¢€", fo(x) = —sin(x), f3(x) = e® — cos(x), f4(x) = sin(x) + 2 cos(z) are
continuous functions;

51:{$€R:f1(x)>1}, SQZ{$€R:f2($)>—1}
so they are open in R whereas
Ss={zeR: f3(z) =0}, Sa={z eR: fa(z) > 2}

so they are closed in R.

O]

cont.

Problem 2.12. Let f : R — R and f(z¢) > ¢ for some xp, ¢ € R. Show that there
exists a neighbourhood U of zg s.t. f(x) > ¢ Vo € U.

Proof. Choose an € = f(xo) —c > 0. Then, as f is continuous, there exists a § > 0 :

|z —zo| <0 = |f(z) — f(z0)| <e
= f(zo) —e < f(z) < f(x0) + ¢
= f(wo) = (f(z0) —¢) < fz) = flz) >c
Set Vs(zo) = {z € R: |z — zo| < 0}.

Thus, there exists a § > 0: z € Vs(zg) = f(x) > c. O

cont.

Problem 2.13. Let f : [a,b] —F R and f(x) > 0 Vx € [a,b]. Show that there exists a
c¢>0st. f(x) >c Vx € [a,b)].

Proof. Let ¢ = min({f(x) : z € [a,b]}) > 0. Such a c exists in [a,b] as [a,b] is
compact: f([a,b]) is the continuous image of a compact set so it is compact, thus
bounded so admitting an infimum and closed so that the infimum is in the set i.e.
minimum. Thus, f(z) > ¢ for all x € [a, b]. O
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cont.

Problem 2.14. Let f: [a,b] —F R s.t. for each x € [a, b] there exists a y € [a, b] with

7] < 51

Show that there exists a ¢ € [a,b] s.t. f(c) =0.
Proof. Construct the sequence (x,),>1 of elements in [a,b] iteratively by setting

x1 = b and for each x,, = = € [a,b] letting z,+1 = y € [a, b] such that

| @ns)] < glf@a)l, m> 1.

Then clearly,
1
[f(zn)l < IfO)] = [f(zn)] = 0 as n — co.
Now, [a,b] is compact so it is sequentially compact. Thus there exists a convergent

subsequence (x, ) of (xy). Suppose z,, — c¢. Then f(z,,) = f(c). But f(z,,) — 0,
so f(c) =0. O

Problem 2.15. In the following either give an example of a continuous function f such
that f(S) =T or explain that there can be no such f :

we use the fact that the continuous image of a compact (connected) set is compact (con-
nected)

(i) S=1(0,1), T =(0,1].
2z, x < 1/2

Ans.: Yes. f=
21 —xz), z>1/2

(i) S=(0,1), T =10,1].
0, x<1/4
Ans.: Yes. f=q2(x—1/4), z €[1/4,3/4]
1, z>3/4
(iii) S=(0,1), T =(1,2) U (2,3).
Ans.: No. S is connected but 7" is not connected.
(iv) S=(-1,1), T=R.
Ans.: Yes. f= 1 *

5 which is continuous on (—1,1).
x

(v) S=R, T'=(-1,1).
2

Ans.: Yes. f = —arctan(x) which is continuous on R.
T

(vi) S=10,1], T =R.
Ans.: No. S is compact but 7' is not compact.

(vi)) §=1[0,1], T = Q.

Ans.: No. S is compact but 7' is not compact.

(viii) S=R, T =Q.
Ans.: No. S is connected but T is not connected.

(ix) S=(0,1)U(2,3), T = {0,3}.
Ans.: No. S is connected but T is not connected.
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1 1
S=3—:neZ" yu{0}, T=4—:neZ" ;.
Ans.: No. S is compact but 7" is not compact.

(xi) S:{ng:nez*}u{o}, T=17".

Ans.: No. S is compact but T is not compact.

cont.

Problem 2.16. Let f : [a,b] — R. Define g : [a,b] — R by

= <z<
g(x) = max f(y), a<z<b

Show that ¢ is continuous on [a, b].

Proof. As [a,b] is compact, f attains its maximum on [a, b] and so g is well-defined.
Sps z1, x2 € [a,b] with x93 > x1. Then,

g(w2) = e f(y) = max (aglyfg 1 (), e f (y)>

—max (g(ar), _max 1)) = glo)

So g is increasing on [a,b]. Also clearly at any point g € [a,b] we have g(zg) >
f(x0). So we have two cases: either g(xzg) > f(zo) or g(zo) = f(x0).

First case: g(xo) > f(zo)

We know that there exists a 6 > 0 s.t [z — 20| < 0 = |f(z) — f(z0)| < €0 (since f is
continuous), with ¢ := g(xg) — f(xg) > 0. So we have

|z — 20| < 6 = f(z) < f(z0) + €0 = g(w0)-

So for x € [a,b] with |z — zg| < § we have [g(x) — g(xo)| = 0.

Then for z € [a, b] we have:
Ve>0: |z — x| <d=l|g(x) —g(zo)| =0 < e.

By which we have the continuity of g.

Second case: g(xo) = f(xo)

For = € [a, xo] we have:

f(x) < g(x) = —g(z) < —f(z) = g(z0) — 9(z) < g(20) — f(2)
= 0 < g(zo) — g(x) < flxo) — flz) = |9(x) — g(zo)| < [f(x) — f(0)]-
Hence with continuity of f we get the continuity of g.

For = € [xg,b] we have g(x) = f(s) for some s € [zg,z]. With continuity of f we
have:
Ve>030>0:|z—xzo| <d=|f(x)— f(zo)] <e.
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Hence
x € [xo, 20 +0) = |f(s) — g9(z0)| < e = |g(x) — g(z0)| <e.

By which we have, again, the continuity of g. O

Problem 2.17. A function f defined on an interval [ is said to be convex on [ iff
f(A =tz +ty) <A —-t)f(x) +tf(y), Yo,yel, te(0,1].

Prove that if f is convex on an open inteval then f is continuous. Verify whether the
result is true for arbitrary intervals also.

Proof. Suppose I = (a,b). Pick any two points ¢,d € (a,b) : ¢ < d.

d—
Let n >0: n< Tc Consider z,y € [c+n,d—n]: = <y. As f is convex on
(a,b), we have that f is bounded on [¢,d] C (a,b) using the inequality,

F(A =tz +ty) < (1 —-1)f(z) +1f(y), Vte[0,1].

For, if z € (¢, d) then taking t = % € (0,1) we have z = t(d—c¢)+c = (1—t)c+1d,
and letting M = max(f(c), f(d)), we have

fER=f(1=t)e+td) <A —=t)f(c)+tf(d) <(1—t)M +tM = M.

If z € (C—;d,d> we have

ctd

c+d c d—c
5= —tettz t="2— 22(2_6)6(0,1)
so that
f (C;d> =f(A=tc+tz) <A —=0)f(c) +tf(2) < fe) + f(2)
— f(z)2f<czd>—f(0)-
If z ¢ (c, C+d> we have
c+d ad_ 5 cqrd—22
= —Dzttd t="—o= 2d—o <OV
so that

f(”d)=f«r%w+uosu—wﬂ@+wﬂ@Sf@»+ﬂ®

2
(C;d>—fu»

= f(2) >

S~
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Letting

m= (@0 (50) 7 (557) - r0ns (57) - (@)

we have m < f(z) < M, Vz € [¢,d]. Thus f is bounded on [c, d], i.e., |f(z)| < K for
some K > 0. We can then write,

z=(01—t)ctty t=—"€(0,1).
Yy

Then,
f@) < A=DFE+tf) = f@) - @) < (1= 8)(f(e) - £))
= == sW)
= @) = f) ST (@ -1w) <T@ - )]
<My -2,
o

Similarly, f(y) — f(z) < %(y — x) so that

F@) - F(@)] < 2f7”|y—as|, Ve,y € e+ n,d— 1.

As ¢,d,n are arbitrary, it follows that f is continuous on (a,b). Because for any

€>O,Wecanpicka5:$5>05.t.

oM oM
ly—xz| <0 = [f(y) — f(z)| ST\y—x\ <75=€-

If I is a general interval and f is convex on I, then f need not be continuous. For
example, define f:[0,1) — R by

fo -z, x>0
1, z=0
then clearly f is convex on [0,1) but discontinuous at x = 0. O

cont.

Problem 2.18. Let f : (a,b) — R. Show that for each = € (a,b) there exists a
neighbourhood (z — 0,2 + d;) = V, such that f is bounded on V,. Note that f may
not be bounded on (a, b).

Proof. By definition, f is continuous at x € (a, b) iff for all € > 0 there exists 6, > 0 :
2" — 2| < = |f(2') - f(z)] <e,

¥ €(x—0pr+6) = flx)—e< f(2) < flz)+e,
2’ €V = |f(2)] < max(|f(z) —el,[f(z) +el).
Which is what was to be shown. O
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Problem 2.19. Let f : [a,b] — R s.t. for each = € [a, b] there exists a neighbourhood
(x — 0z, + 0;) = Vg s.t. f is bounded on V,. Show that f is bounded on [a,b]. Note
that f may not be continuous on [a, b].

Proof. [a,b] is compact so it is sequentially compact i.e. there exists a sequence
(xn) C [a,b] with a subsequence (zp,) s.t. x,, — ¢ € [a,b]. Assume towards a
contradiction that there exists an x € [a,b] s.t. f is unbounded. Then f(z,) > n
for every n € ZT. From the problem there exists dy corresponding to £ s.t. f is
bounded on V; = (£ — 6y, ¢ + 0¢). Choose n large enough s.t. z, € V,. Then
f(xy) > n but f is bounded on V;. Absurdity. Thus, f cannot be unbounded at
any point x € [a, b]. O

Problem 2.20. Let f : ACR — R.

(i) Let f be continuous on A. If (x,),>1 is a convergent sequence in A then show
that (f(zn))n>1 is also convergent. Verify whether convergent can be replaced by
Cauchy or bounded.

(ii) Let f be such that if (z,,)n>1 is a Cauchy sequence then (f(xy,))n>1 is also Cauchy
in A. Hence show that f is continuous on A.

Proof. (i) Sps f is continuous at = € A and suppose (x,) C A : x, — . Then it
suffices to show that f(x,) — f(z). For any € > 0, by definition, there exists
0>0:

reA: | —z|<d = |f(@)— flz) <e.

But as § > 0 we also have
|zy, — x| <6, n>ng
for some ng € ZT. Thus,

|f(xn) — f(x)] < e, n > nyp.

As R is a complete metric space, convergent can be replaced by Cauchy as
convergence is equivalent to Cauchy convergence in a complete metric space.
Also, convergent can be replaced by bounded as convergence implies bound-
edness.

(ii) We are working over A C R so convergence and Cauchy are equivalent. Sps
() C A is Cauchy s.t. z,, — z, then from the problem we have that (f(z,))
is Cauchy as well s.t. f(z,) — f(z). Assume towards a contradiction that f
is discontinuous at x, so there exists € > 0:Vd > 0:

2 — x| <6 = |f(@)) - f(=)| >
1
Take § = — > 0, then
n
1
\a:n—x|<ﬁ:5 = |f(zn) — f(x)| > eVneZ"

= flza) # f().
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But from the problem f(z,) — z. Absurdity. Thus, our assumption was
wrong and f must be continuous on A.

O]

Problem 2.21. Let f : [a,b] — R be continuous on [a,b]. Suppose f has local maxima
at two different points x1 and z. Show that there must be a third point between x
and xo where f has has a local minimum.

Problem 2.22. Let f : [a,b] — R be continuous on [a,b]. If f has neither a local
maximum nor a local minimum at any interior point then prove that f must be monotonic
on [a,b].

Problem 2.23. Let f : (a,b) — R be a function such that for each z € [a, b] there exists

a neighbourhood (z — 0,z + 0,) = V, such that f is increasing on V,. Show that f is
an increasing function throughout (a,b).

Problem 2.24. (i). Let f : [a,b] — R be monotone increasing and ¢ € (a,b). Then
show that f(c—) and f(c+) exist and

fle—) =sup(f(z) :a <z <c)and f(ct+) =inf(f(z) : c <z <b).

(ii). Let f : [a,b] — R be monotone decreasing and ¢ € (a,b). Then show that f(c—)
and f(c+) exist and

fle—) =inf(f(z):a <z <c)and f(ct+) =sup(f(z) :c <z <b).

(iii) Let Dy denote the set of discontinuities of a monotone increasing or decreasing
function f defined on an interval I. Show that f can’t have discontinuities of the 2nd
kind and Dy is countable.

(iv) Let S = {z1,x2,...} C [a,b]. Does there exist a function f : [a,b] — R such that f
is monotone and the set of discontinuities of f is S ?

Proof. (i) For a < x < ¢ we have f(z) < f(c) as f is increasing. So the set
{f(z) : a < x < ¢} is bounded above and nonempty as f(a) is in the set.
Thus, M = sup(f(z) : a <x < ¢) € R exists. Let ¢ > 0. Then there exists an
element z. : a < z. < cs.t. M —e < f(x:) < M. Letting 6 = ¢ —x. > 0 we
have

z € (c—9d,c)N[a,b] = z € (z.,c)N[a,b] = M—e < f(xe) < f(z) < M+e¢

= |f(z) — M| <eVze (c—9,0)N]a,b]
Thus, lim f(x) =M =sup(f(z):a <z <c).

Tr—rc—

(ii) For a < z < ¢ we have f(z) > f(c) as f is decreasing. So the set {f(z) :
a < x < ¢} is bounded below and nonempty as f(a) is in the set. Thus,
m =1inf(f(z) : a < x < c¢) € R exists. Let € > 0. Then there exists an element
Te:a < xe <cst.m< f(z:) <m+e. Letting 6 = ¢ — z. > 0 we have

z € (c—d,¢)N[a,b] = z € (zc,c)N[a,b] = m—e < f(z) < f(ze) <m+e

= |f(x) —m| <eVz € (c—9,0)N]|a,b]
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Thus, lim f(z) =m =inf(f(z):a <z <c).

Tr—rc—

O

Problem 2.25. Let f : [a,b] — R be monotone increasing. Then show that f is
continuous at a iff f(a) = inf(f(x) : a < x < b) and f is continuous at b iff f(b) =
sup(f(x) : a < x < b). (Similar result holds for monotone decreasing functions).

Problem 2.26. (i) If f is one-one and continuous on [a,b] then prove that f must be
strictly monotonic on [a, b]. If f is strictly increasing then show that =1 : [f(a), f(b)] —
[a, b] exists, and is strictly increasing and continuous.

(ii) Let f : [a,b] — R be continuous on [a,b]. Then show that there is a function g such
that g o f = id iff f is strictly monotone. Such a function f is called homeomorphism
between domain [a, b] and the range [f(a), f(b)].

Problem 2.27. Give an example of a function f defined and strictly increasing on a
set S in R such that f~! is not continuous on f(S).

Problem 2.28. Let f be strictly increasing on a subset S of R. Show that f must be
continuous on S if f(.S) has one of the following properties:

(i) f(S) is open (ii) f(5) is connected (iii) f(.5) is closed.

Problem 2.29. Let f : [0,1] % R s.t. for every y € R either there is no z € [0,1] :
f(x) =y or there is exactly one such z. Show that f is strictly monotonic on [0, 1].

Problem 2.30. Let f : [0,1] — R s.t. for every y € R either there is no z € [0,1] :
f(z) = y or there are exactly two such values of z € [0,1] : f(z) = y. Then,

(i) Prove that f can’t be continuous on [0, 1].
(ii) Construct a function f which has the above property.

(iii) Prove that any function with this property has infinitely many discontinuities on

[0, 1].
Problem 2.31. Let f:[0,1] — R s.t.

then show that
(i) f(f(z)) =z for all z € [0,1].
(ii) f(z)+ f(1 —z) =1 for all z € [0,1].

1
(iii) f is continuous only at x = 3

(iv) f attains every value between 0 and 1.

(v) f(x +y) — f(x) — f(y) is rational for all z,y € [0,1].
This shows that the converse of the intermediate value theorem is not true.

Proof. (i) f(f(x)) = f1-2)=1—(1—2)=a.
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Problem 2.32. Use intermediate value theorem for continuous functions to prove the
following:

(i) If n € Z" and a > 0 then there is exactly one b € R : b" = a.

(ii) Let f(xr) = tan(x). Although f(w/4) = 1 and f(3w/4) = 1 there is no = €
[7/4,3m/4] : f(x) = 0. Explain why this does not contradict the intermediate value
theorem.

cont.

(iii) Let f : [a,0] — R. If f(a) < a and f(b) > b then prove that f has a fixed point in
[a, b] i.e. there exists some point ¢ € [a,b] : f(c) = c.

Problem 2.33. Let F' be a closed set of real numbers and f be a real-valued function
continuous on F'. Show that there exists a function g well-defined and continuous on R

s.t. f(xz) = g(x) Vo € F. Such a function g is called the extension of f. Show that the
extension may not be possible if F' is not closed.

uniform cont.

Problem 2.34. (a) Let f: SCR ~ — " R. Show that
(i) (zn) C S convergent in S = (f(xy)) convergent in R.
(ii) (z,) € S Cauchy in S = (f(x,)) Cauchy in R.

(iii)) A € S bounded = f(A) bounded. Give an example to show that if A is not
bounded then f(A) need not be bounded.

(b) Let f: S CR — Rs.t. if (x,) is Cauchy in S then (f(zy)) is Cauchy in R. Verify
whether f is uniformly continuous or not.

Problem 2.35. (i) Let f: S CR — Rs.t. f(x) =22 If S C R is bounded then show
that f is uniformly continuous on S. What can you say if S is not bounded ?

uniform cont.
— R.

(ii) Verify whether the following statement is true or false: Let f: K CR
Then there exists a constant M > 0 s.t. |f(z)] < M|z|Vz € R.

uniform cont.
—

Problem 2.36. Prove that f : § C R R iff for every pair of sequences
(Zn), (yn) C S with lim(x,, — y,) = 0 we have lim(f(x,) — f(yn)) = 0.

Problem 2.37. Show that the functions

are not uniformly continuous on (0, c0).

cont.

Problem 2.38. (i) Let f : [a,b] — R. Then show that f is uniformly continuous on
[a,b]. The result holds if [a,b] is replaced by a compact set K.

cont.

(ii) Let f : (a,b) — R. Then show that f is uniformly continuous iff

lim f(z) and lim f(x)

T—a+ r—a—
exist finitely.

(iii) Prove that f is uniformly continuous on (a,b) iff f can be defined at the endpoints
a,b s.t. the extended function is continuous on [a, b].

Problem 2.39. Show that K C R is compact iff every continuous function f : K — R
attains its maximum value.
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Problem 2.40. Let f: K CR ™ R be bijective. If K is compact show that f~! is
also continuous.

Problem 2.41. Show that if f is continuous on [0,00), and uniformly continuous on
[a, 00) for some constant @ > 0 then f is uniformly continuous on [0, c0).

Problem 2.42. Let f : A C R — R s.t. for every ¢ > 0 there exists a function
ge : A = R s.t. g is uniformly continuous on A and

|f(z) — ge(z)] <eVz e A

Show that f is uniformly continuous on A.
Problem 2.43. Let f: ACR — R and K > 0 be a constant. If

(@)= f)] < Klo —yl° Vo ¢ A
then f is said to be Lipschitz of order «.
(i) Show that f is continuous if o > 0 and differentiable if o > 1.
(ii) Find a Lipschitz function of order 1 for which the derivative does not exist.
(iii) If & = 1 then show that f is uniformly continuous.

Problem 2.44. Let f : R — R and t,a be nonzero fixed reals. Define g,h : R — R by
g(z) = f(x+1), h(x) = f(az). If f is continuous (uniformly continuous) then show that
g, h are continuous (uniformly continuous).

Problem 2.45. Let f : (a,b) — R be differentiable and f’ be bounded on (a,b). Then
show that f is uniformly continuous on (a,b). Find a counterexample to show that the
converse need not be true.

Problem 2.46. Let f: R — R satisfy Cauchy’s functional equation
fle+y) = f)+ fy), Yo,y e R.

(i) If f is continuous at a point o then show that f is continuous on R and there exists

a constant c¢ s.t.
f(z) = cx Vz € R.

(ii) If f is bounded above on some interval or f is monotonic on R then there exists a

constant c¢ s.t.
f(z) =cx Vr e R.

Problem 2.47. Let f : R — R s.t.
f(x + y) = f(x)f(y), Va,y € R.

If f is continuous at x = 0 then show that f is continuous on R. Show that there exists
a constant c s.t.

f(z) = e Vz e R.

Problem 2.48. Let f: (0,00) — R s.t.
flzy) = f(x) + f(y), Yo,y € R.

If f is continuous at z¢ € (0,00) then show that f is continuous on R. Show that there

exists a constant c s.t.
f(z) = clog(x) Vz € (0,00).
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Problem 2.49. Let f: (0,00) — R s.t.

flzy) = f(2)f(y), Y,y € R.

If f is continuous at z¢ € (0,00) then show that f is continuous on R. Find all such
continuous functions.

cont.

Problem 2.50. Find all f: R — R s.t. f(x) — f(y) is rational for rational x — y.

Problem 2.51. For |¢| < 1 find all functions f : R — R s.t. f is continuous at 0 and
satisfies the functional equation

f(z) + f(gz) = 0.

Problem 2.52. Find all functions f : R — R s.t. f is continuous at 0 and satisfies the
functional equation

flz)+ f <§x> = 0.

cont.

Problem 2.53. Find all f: R — R satisfying the Jensen equation

; (x+y> _ @)+ W)

2 2

cont.

Problem 2.54. Find all f : (a,b) — R satisfying the Jensen equation

; (x;y) SPOR ()

Problem 2.55. If f : R — R be a function s.t. either f(x—) or f(xz+) exists finitely
then show that the set of discontinuities of f is countable. The result holds even if the
limit exists infinitely.
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§3 Differentiability

Notes from the professor are appended in the following pages.
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DIFFERENTIABILITY OF REAL VALUED FUNCTION

PROF KALLOL PAUL

We begin with the definition of tangent to a curve y = f(z) at a point P. By a curve we mean a

continuous function f : [a,b] — R.

Definition 0.1 (Tangent). Let y = f(z) be a given curve and P(zg,yo) be any point on it. Consider
another point Q(z1,y1) near to P on the curve. Then draw a straight line, known as secant of the
curve, passing through points P and . Let us now move the point @) towards P along the curve. If
the limiting position of the secant as @@ approaches P exists then the limiting position of the secant
is known as the tangent to the curve y = f(z) at P. The existence of such a.tangent to the curve at

a point is not always guaranteed.

Let oy be the angle made by the secant P() with the positive z-axis and a be the angle made by

the tangent at P with the positive z-axis. Then tan a; = £=% " As @ approaches P along the curve

1 —xg
Y1—Y%o

we get a1 approaches o and so limg_, p a-n = limg, 5 tan oy = tana.

@)

Next we define derivative of a function y = f(z) at a point x.

Definition 0.2 (Derivative). Let f: S C R — R be a function and z € S be a limit point of S.
Then the function f is said to have a derivative at z¢ if there exists a real number L such that

lim f(@) = f(20)

0 Tr — xg

=1L
In other words f is said to be differentiable at xq if there exists a real number L such that for any

given € > 0 there exists 6 > 0( depending on z( and €) that satisfies the following:

f@) = f(zo)

—Ll<eVxe(rg—0d,xzo+0)NS,z# .
T — Xo

1For any further readings please see books by Rudin, Apostol or Bartle and Sherbert.
1
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Differentiability of real valued function

In such a case we say f is derivable at x( or f is differentiable at zyp and we write f’(x¢) = L.
Observe that the existence of the limit

lim 770(1) A G

z—xo T — xg

is equivalent to the existence of the limit

B f
i @0 1) — f(ao)
h—0 h
Let us note that these two definitions are equivalent in the sense that if f is derivable at a point

zo then the tangent to the function f exists at the point P(xg,yo),

lim hzd _ lim 7f($) — J{wo)

Q=P X1 — X9 T—T0 xr — I
The first definition is geometric and the second one is analytical.
There are functions for which the derivative at a point does not exist, consider f : R — R defined by
f(x) = |z|. Then f is not differentiable at z = 0, note that there is a sharp edge at © = 0. As we have
already seen that the existence of limit of a function f as z — z( is meaningful and interesting only
when zg is a limit point of the domain of the definition of the function, so without loss of generality

we assume that the point under consideration is a limit point of the domain of the function.

Definition 0.3 (Differential of a function). Let f:S C R — R and @ € S be such that there exists
6 > 0 such that (z — d,z 4+ ) C S. The derivative of the function f at x is defined as
iy St h) — f(2)
AR5 lllli% h ’

if the limit exists. Let y = f(z), Am=h, Ay = f(z+ h) — f(z). The quantity Ay denotes the change
in the value of the dependent variable y corresponding to the change Ax of the independent variable
2. Then f/(z) = lima, S0 %;i. Consider the function € : (—d,) — R defined as

fle+h) - fl= Ay

clhy = LEXNZI@) iy - BV o,

xr

T+ Ax

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024
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Differentiability of real valued function

It is easy to see that the existence of the derivative of the function f at x is equivalent to the fact
that limp,_,0 €(h) = 0. Now,
Ay = f'(z)Ax + e(Az)Ax
indicates that the change Ay is sum of two parts, one is linear part f’(z)Az and the other part is
e(Az)Ax, which can be made as small as possible compared to Az by making Az itself small enough.
The linear part in the expression Ay is known as the differential of the function y = f(z) and we
write it as
dy = df (z) = f'(z)Aw.

Thus for a function f which is differentiable at x, the differential of f is a well-defined function of Az.
For the particular function y = z, we get doz = Az. Thus the differential of the function y = f(z) can

be written as
dy = df (z) = f'(x)dz.

Example 0.4. Let f : R — R be defined as f(z) = 2. Consider the point z = 2. Clearly
Ay = (2+ Ax)? — 2% = 4.Ax + Aa?
and so the differential of f at = 2 is dy = df (2)|y=2 = 4da.

Theorem 0.5. Let f: S C R — R and xg € S be.a limit point of S. Then f is differentiable at xq if
and only if there exists a unique function ¢ : S — R such that ¢ is continuous at xo and
f(x) = f(xo) = (x — zo)p(z) Yz € S.
Moreover, ¢(zo) = f/(x0).
Proof. We first prove the necessary part. Define ¢ : S — R by
PENICE (D

T — Xo

s T F T
= f'(xg), otherwise.

Then lim, 4, ¢(z) = f'(xo) = ¢(z0) and so ¢ is continuous at zo. Also from the definition of ¢ it
follows that

f(@) = f(wo) = (¥ — wo)p(x) Vx € S.
Nexty we show that such function ¢ is unique. Let there be another function ¢; : S — R such that
¢1 is eontinuous at xy and

f(z) = f(zo0) = (& — z0)¢1(x) Vo € S.
Then for each x(# zg) € S, ¢(x) = ¢1(x). Since @, ¢1 are continuous at z, it follows that ¢(zg) =
¢1(x0). Thus ¢(x) = ¢1(x) for all z € S and so ¢ = ¢;. This completes the proof of necessary part.

We next prove the sufficient part. Suppose ¢ : S — R is continuous at zy and

f(@) = f(z0) = (z — 20)¢(z) Yz € S.

Then for all z # zy we get ¢(z) = %ﬁz“) and by continuity of ¢ at x¢ we conclude that

#(x0) = Llinfo (@) = Llinfo W.

Thus f is differentiable at xg.

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

43



Sayan Das (July 6, 2024) Theory of Real Functions

Differentiability of real valued function

O

Theorem 0.6. Let f : S C R — R and xg € S be such that there exists 6 > 0 such that (xg—0, zg+0) C
S. Then f is differentiable at zo if and only if there exists a unique function ¢ : (—0,0) — R such that
¢ is continuous at 0 and

f(zo+h) — f(zo) = ho(h) Vh € (=6,0).
Moreover, ¢(0) = f'(zo).

Proof. We first prove the necessary part. Define ¢ : (—=4,0) — R by
f(zo +h) — f(z0)

h

f'(z0), otherwise.

#(h) Ch#£0

Then limp_0 ¢(h) = f'(z0) = ¢(0) and so ¢ is continuous at 0. Also from the definition of ¢ it follows
that

Flao +h) = f(xo) = ho(h) ¥h E(=3,B).

Next, we show that such function ¢ is unique. Let there be another function ¢y : (—4,d) — R such

that ¢ is continuous at 0 and
f(zo + h) — f(mg) = hoi(h) Yh € (—6,0).

Then for each h(# 0) € (=4,0), ¢(h).= ¢1(h). Since ¢, ¢; are continuous at 0, it follows that ¢(0) =
¢1(0). Thus ¢(h) = ¢1(h) for all h € (=0,6)and so ¢ = ¢1. This completes the proof of necessary
part.

We next prove the sufficient part. Suppose ¢ : (—4,9) — R is continuous at 0 and
f(@o+h) = f(wo) = he(h) Vh € (=6,0).
Then for all h # 0 we get ¢(h) = %HW and by continuity of ¢ at 0 we conclude that

=1 o flwo+R) = f(zo)
$(0) = Jim ¢(h) = lim ===

h—0
Thus f is differentiable at xq. O

Theorem 0.7 (Differentiability implies continuity). Let S C R and o be a limit point of S. If f is

differentiable at xy then f is continuous at xo but the converse is not true.

Proof. Since f is differentiable at z( so there exists a function ¢ defined on .S, which is continuous at
o and satisfies
f(@) = f(xo) = (x — wo)d(x) Y € S.
Taking limit as x — z¢ we get
Jim f(z) = f(zo).

This shows that f is continuous at xq. For the converse part, consider f : R — R defined by f(z) = |z|.
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31y
2 1
1 +
-3 -2 -1 1 2 3
14
Then f is continuous at 0. Observe that
f(0+)= lim — = lim == lim 1=1
z—0+ T z—0+ 2 x—0+
whereas, f'(0—) = lim lz] — lim =% = Jim\—1& —1.
rz—=0— T rz—=0— @ =0+
So the function f is not differentiable at 0. O

Theorem 0.8 (Chain rule). Let S,T C R and xy €S be a limit point of S. Also assume yo € T is a
limit point of T. Let f : S — T and g : T — R be'two functions such that f is differentiable at xy and
g is differentiable at f(xzg) = yo. Then go f .S — Rius differentiable at xo and

(g0 f)(@o)=g'(yo) f' (o).

Proof. Since f is differentiable at zg so there exists a function ¢ defined on .S, which is continuous at
xo and satisfies

f(@) = f(z0) = (z — 20)¢(2) Yz € S.
Again, Since g is differentiable at y so there exists a function v defined on 7', which is continuous at
yo and satisfies

9() —9(yo) = (y —yo)¥(y) Vy € T.
Also observe that, ¢(xg) = f'(zo) and ¥(yo) = ¥ (f(z0)) = ¢'(y0). Now,

gof(z)—goflm) = g(f(2))—ag(f(z0))

P(f (@) (f(x) = f(wo))
Po f(z).d(z)(x — o).

Since composition of two continuous function is continuous so ¥ o f is continuous at zg, also product

of two continuous function is continuous so that (i o f). ¢ is continuous at xg. Defining h : S — R by

h(z) = o f(x).¢(x) we see that h is continuous at x¢ and h satisfies
go f(x) —go f(zg) = h(z)(x —zg) Vo € S.
This shows that g o f is differentiable at zy and

(go f)(zo) = g (y0) f'(x0).
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Remark 0.9. To illustrate the above result let us look at the function u(z) = cos(z* + 3x). Consider
f(z) = 2®+32 and g(z) = cosz. Then go f(z) = g(f(x)) = cos(a®+3x). Thus ' (z) = ¢'(f(z)) f'(z) =
—sin(z® + 32).(32% + 3) = —3(2% + 1) sin(a® + 31).

Theorem 0.10. Let X, Y C R and f : X — Y be a function which is invertible. Let xo € X and
f(zo) = yo. If f is differentiable at xo and f~1 is differentiable at yo then

RN 1
(7Y 0) =
Proof. Clearly (f='o f)(zo) = (f~1) (yo)-f"(x0) and f~1 o f = Iy, where Ix is the identity function
on X. Then we get, (f~1) (yo).f'(x0) = 1 and so (f~1)'(yo) = m O

The next theorem shows that differentiability of =1 at yo is not essential in the hypothesis.

Theorem 0.11. Let XY C R and f : X — Y be a function which is invertible. Let xo € X
and f(xo) = yo. If f is differentiable at xo and f~' is continuous at yo, f'(xo) # 0 then f~1 is
differentiable at yo and

N |
)= gy

Proof. Since f is differentiable at xy so there exists a unique function ¢ defined on X, which is

continuous at xg and satisfies
flx) = f(zo) = (& — z0)p(x) Vo € X.

Also ¢(zo) = f'(z9) # 0. Then by the neighbourhood property of the continuous function ¢ there
exists § > 0 such that ¢(x) # 0 for all € (xo — &, 29 + &) N X. Since f~! is continuous at yo so
(F~H (o — 8,20 + 6) N X) is an open set in Y containing the point yo. Let U = (f~1) 71 ((xo —
0,29 + 6) N X). Then for all y € U we get,

y—yo=rofT ) — fof Hwo) = FUFT W) — F(FT Wwo) = o(F T (T W) — £ (wo)-

Observe that ¢o f~Y(y) = ¢(f~1(y)) # 0 for all y € U and so the function ﬁ is continuous at yq.

This along with the relation
1
') = o) = —== (v —
(y) (o) ¢Of,1(y)( 0)
implies that f~! is differentiable at yo and
1y 1
0= Fgy
O

Remark 0.12. The condition f’(zo) # 0 is essential. Consider f : [0,1] — [0,1] defined as f(x) = 2®.
Then f is differentiable at 0 and f/(0) = 0. Clearly f is bijective and so f~! exists. But f~'(z) = z'/3

is not differentiable at 0, though continuous at 0.

Algebra of differentiable functions.
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Theorem 0.13. Let S C R and zy be a limit point of S. Let f,g : S — R be differentiable at x.
Then

(i) f + g is differentiable at o and (f + g)'(z0) = f'(z0) + ¢'(z0).

(ii) f.g is differentiable at xo and

(f.9) (w0) = f'(x0)g(xo) + f(x0)g' (x0)-

(i) For any real constant ¢, cf 1is differentiable at xo and (cf)'(xo) = cf'(z0)-
(w) if g(x) # 0 for all z € S then é is differentiable at o and (i)’(wo) = 75(/;—2‘;%4
(v) if g(x) # 0 for all x € S then ﬁ is differentiable at xoy and

I f(@o)g(o) — f(o)g' (wo)
<§> (z0) = 9(w0)?

Remark 0.14. It may so happen that f is not differentiable at a point zy but g is differentiable at
zo and the product f.g is differentiable at xy. Consider f,g: R — R defined as

flz) = sin(l/z), 2 #0
= 0,z=0

g(z) = 22

Then f.g : R — R is given by
fg(e) = 2¥sin(1/2),

which is differentiable at 0, though f is not differentiable at 0.
1072
Y

\ 1%

/ 71 €

Definition 0.15 (Extreme value of a function). Let f:S C R — R. Then

(i) f is said to have a relative maximum or maximum at a point o € S if there exists § > 0 such that
f(@) < f(zo, Yo € (m0 — d, 30 + )N S.
(ii) f is said to have a relative minimum or minimum at a point z¢ € S if there exists § > 0 such that

f(x) > f(xo), Yo € (o — 20 + )N S.
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(iii) f is said to have a global maximum at a point 2y € S if
f(@) < flxo), Yz € S.

(iv) f is said to have a global minimum at a point 2o € S if
() > f(zo), Va € 5.

The function f is said to have a relative extremum at a point xo if the function has either relative

maximum or relative minimum at x.

Theorem 0.16. Let f : S C R — R be such that f attains its relative mazima ( or minima) at an
interior point ¢ € S. If f is differentiable at ¢ then f'(c) = 0.

Proof. Assume that f attains its maxima at ¢ € S. Then there exists 6 > 0_such that
f(x) < f(e), Ve € (¢c—d,c+0)NS.

Now, f(c+h) — f(e) <0, Yh € (=4,0) and so f'(c+) = limp 0+ M <0, whereas f/'(c—) =

limy, o w > 0.

A

@) !

0 @ ¢ LL ’

Since f is differentiable at ¢ so the only possibility is that f/(c+) = f/(¢—) = 0. Thus f’(¢) = 0. The

proof for the case when f attains its relative minima follows in the same spirit. O

Remark 0.17. Observe that the existence of derivative at a point is not necessary for a function to
have maxima or minima at that point. Consider the function f : R — R defined as f(z) = |z|. Then

f has a minima at 0 but f is not differentiable at 0.

Theorem 0.18 (Rolle’s Theorem). Let f : [a,b] — R be a function such that
(i) f is continuous on [a,b],

(ii) f' exists on (a,b) and

(iit) f(a) = f(b) = 0.

Then there exists a point ¢ € (a,b) such that f'(c) = 0.

Proof. If f(xz) = 0 for all z € [a,b] then clearly f'(z) = 0 for all € [a,b] and the result holds.
Without loss of generality assume that f(z) > 0 for some = € (a,b). Since f is continuous on the
compact set [a,b], f attains its global maximum at some point ¢ € [a,b]. As f(a) = f(b) = 0, so

¢ € (a,b). Now, f attains its maxima at ¢ and f is differentiable at ¢ imply that f’(c) = 0.
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O

Remark 0.19. The condition f(a) = f(b) is sufficient to guarantee the existence of ¢.€ (a, b) such that
f'(¢) = 0. Since f is continuous on the closed interval [a,b] so f attains its maximum and minimum
therein. First suppose that f attains its extremum values at @ and b. Then f(a) = f(b) shows that
f is constant on [a,b] and so f'(z) = 0 for all x € [a,b]. Next; assume f attains its maximum or

minimum at some point ¢ € (a,b). Then ¢, being interior point of [a,b], we get f'(c) = 0.

Remark 0.20. The geometrical interpretation of Rolle’s theorem is that there exists a point at which

the tangent to the curve is parallel to the z-axis.

The following examples illustrate the fact that all the three conditions mentioned in Theorem 0.18

are needed.
Example 0.21. (i) Let f : [0,1] = R be defined as

fe) = %,xe(o,l)

Then f satisfies conditions (ii), (iii) but does not satisfy (i). Note that there does not exist ¢ € (0,1)
such that f/(¢) = 0.
(ii) Let f :[—1,1] = R be defined as

f@) = |z|.
Then f satisfies conditions (i), (iii) but does not satisfy (ii). Note that there does not exist ¢ € (—1,1)
such that f'(c) = 0.
(ili) Let f: [1,2] — R be defined as

J@) = .
Then f satisfies conditions (i), (ii) but does not satisfy (iii). Note that there does not exist ¢ € (1,2)
such that f/(¢) = 0.

Theorem 0.22 (Mean Value theorem). Let f : [a,b] — R be a function such that
(i) [ is continuous on [a,b] and

(i) [ exists on (a,b).

Then there exists ¢ € (a,b) such that

f®) = f(a) = (b—a)f'(c).
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Proof. Consider the function ¢ : [a,b] — R defined as
f(0) = f(a)

b—a
Then clearly ¢ is continuous on [a, b], ¢’ exists on (a,b) and ¢(a) = ¢(b) = 0. So by Rolle’s theorem
there exists ¢ € (a,b) such that ¢'(c) = 0. Observe that

¢/(I) — f/(ZE) _ f(bl)] — f(a)

¢(z) = f(z) - f(a) -

(x —a).

vV € (a,b).

Thus we get
f(0) — f(a) = (b—a)f'(c) for some c € (a,b).

Remark 0.23. (i) This theorem is known as Lagrange’s Mean Value Theorem or Mean Value Theorem
of differential Calculus.

(ii) This theorem can also be stated as :

(a) Let f : [x1,22] = R be a function such that f is continuous on [z1, 2] and f’ exists on (x1,z2).
Then there exists '€ (0,1) such that

flxa) = f(21) = (w2 — 1) f' (21 + (22 — 21)0).

Note that each real number in [z, z2] can be written in the form z1 + (22 — z1)0, for 6 € [0,1].
(b) Let f.: [z,z + h] — R be a function such that f is continuous on [z,z + h] and f’ exists on
(2,2 + h). Then there exists 6 € (0,1) such that

f(x+h) — f(z) =hf'(x+0h).

(iii) The geometrical interpretation of Lagrange’s mean value theorem is that there is a point ¢ € (a, b)

at which the tangent to the curve is parallel to the chord joining the end points (a, f(a)) and (b, f(b)).

Theorem 0.24 (Cauchy Mean Value theorem). If f and g are continuous on the closed interval [a, b]

and differentiable on the open interval (a,b) then there exists a point ¢ € (a,b) such that

[£(b) = f(a)lg'(c) = [9(b) — g(a)]f'(c)-
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If ¢ (x) # 0 for all x € (a,b), then
fle) _ f(b) = f(a)

gc)  g(b)—g(a)’
Proof. Consider the function h defined on [a,b] as
hz) = [f(b) = f(a)lg(z) — [g(b) — g(a)lf ().

Then h is continuous on closed interval [a,b] and differentiable on open interval (a,b). So there exists
¢ € (a,b) such that

W(c)= 7h(b()) : ZL(”)

Clearly h(a) = f(b)g(a) — g(b)f(a) = h(b) so that

[£(b) = f(a)lg'(c) = [9(b) — g(a)]f'(c).
O

Remark 0.25. The geometrical interpretation of Cauchy’s mean value theorem is that there is a
point ¢ € (a,b) at which the tangent to the curve h(xz) = (f(z), g(x)) is parallel to the secant joining
the end points (f(a),g(a)) and (f(b), g(b)).

Theorem 0.26 (L'Hospital’s rule (%form)). Suppose [ and g are real valued functions differentiable
on (a,b) and ¢'(x) # 0 for all z € (a,b). Suppose
f'(=@)
g'(x)
If f(z) = 0 and g(x) — 0 as x — a then
f(@)

— - = KasasT — a.
g9(@)

Proof. Consider first —oo < K'< ooand f(z) — 0 and g(z) — 0 as x — a. Let € > 0. From the

— K asa — a.

definition of limit it follows that there exists ¢ € (a,b) such that for all z,a < x < ¢ we have
f'(x)
g'(x)
If a < < y < cthen by Cauchy’s mean value theorem there exists ¢ € (x,y) such that

fl@) = f) _ ')

9(z) —gly)  g@#)
Thus forall z,y with a < z < y < ¢, we get

K—e<

< K+e

K—-e< (@) = /) <K +e
9(x) — g(y)
Letting ¢ — a we get
KfegM <K +e¢, Vy € (a,c).
9(y)

Next consider K = oo and f(z) — 0 and g(z) — 0 as  — a. Then given M > 0 there exists ¢ € (a, b)
such that
['@)
g'(x)
Then as above we get for all z,y with a <z <y <,
f@) = 1)
g9(@) —g(y)

> M, Yz € (a,c).
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Letting 2 — a we get for all y,y € (a,c),

Ly) > M.
9(y)
This shows that
LI) —00as T — a.
g(x)
The case for K = —oo can be dealt similarly. O

Theorem 0.27 ( L’Hospital’s rule ( é form) ). Suppose f and g are real valued functions differentiable
on (a,b) and ¢'(z) # 0 for all x € (a,b). Suppose

/@)

— K asx — a.
g'(x)

If g(x) — 00 as @ — a, then
M — K as asx — a.
g(x)
Proof. First consider the case —oo < K < 0o and g(x) — 00 as & —a. Let € > 0. From the definition
of limit it follows that there exists ¢ € (a,b) such that for all.z,a <& < ¢ we have
f'(@)
9'(z)
If a < < y < ¢ then by Cauchy’s mean value theorem there exists ¢ € (x,y) such that
f@=fy) _ '@
9(z) —gly)  ¢'(t)
Thus for all z,y with a < z <y < ¢, we get

K—-e< <K +e

@ 1w _
SRR TE I
Keeping y fixed we can choose a point ¢; € (a,y) such that g(z) > ¢g(y) and g(z) > 0ifa <z < ¢1.
Then
_ (1 - Wy _ 9(@) —g(y) fla) = fly) of1- 9w
90 - 00) < T am g < - gm)
Thus,
9w\ _ f&) _ f) 9y)
(K—e)(l—m) < rEREO) < (K+6)(1_m>'
Letting 2 — a and noting that g(z) — oo as * — a we get,
(K —¢) S}L“LJ;(? < (K +e).
Since € > 0 is arbitrary we get
tim 1) _
a~a g(z)
f(z)

Next consider the case K = oco. Let o > 1. Choose ¢ € (a,b) such that > a for all z € (a,c).

g’ (x)
Then for all ¢ < z < y < ¢, using Cauchy’s mean value theorem, we get
) G (C)

g9(z) —9(y)
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Since g(z) — 0o as © — a so we can assume that g(c) > 0 and L < lox o) o 1 for all

x € (a,c). Choosing y = ¢ in the inequality (1) we get
(- i) G mae) 70 5) > 5

f@) 1 f@ 1
ﬁ>§a+m>§(o¢ 1).

Since e > 1 is arbitrary it follows that

This implies that

L f@)
o K=

The case for K = —oo can be dealt similarly. |

x

Example 0.28. Evaluate lim (2 - Llog(1+)).
T

Solution. lin% (- Flog(l+2) = lin?) (%W) . Consider the functions f : (0,1) — R and
g: (0,1) - R dcﬁncd as f(z) = z — log(l + x) and g(x) = 22 respectively. Clearly, f,g are
differentiable on (0,1) and ¢'(z) = 2z # 0 for all x € (0,1). Now, f(z) — 0 and g(z) — 0 as z — 0.

Therefore, applying L’Hospital’s rule we get,

1 1
Jiny (; ~ gzl + *’>> = iéf;
@
- llg%) g'(z)

1 - -
250 2(1 + )

Example 0.29. Evaluate limO (cot z)sin e,
T

Solution. Let I = IIIIB(COT,I )$in® Then logl = hmw Consider the functions f : (0,1) — R
and g : (0,1) — R defined as f(z) = log(cot z) and g(x) = cosec z, respectively. Clearly, f,g are
differentiable on (0, 1) and ¢'(x) = —cosec x cot z # 0 for all z € (0,1). Now, g(z) — 0o as  — 0 and
so applying L'Hospital’s rule we get,

logl = lim —

- lim —(52-)(cosec? )
z—0 —cosec rcotx

= limsinzsec?z = 0.
z—0

Therefore, [ = €% = 1.

As applications of Lagrange’s Mean Value Theorem, we can study the monotonicity of a function.
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Theorem 0.30. Let f be a differentiable function defined on an interval I C R. Then
(i) f'(xz) > 0 if and only if f is increasing on the interval I.

(i) f'(z) <0 if and only if f is decreasing on the interval I.

(iii) f'(x) =0 for all x € I if and only if f is constant.

Proof. We prove (i), the proof of (ii) follows in the same spirit. Assume first that f/'(z) > 0 for all
z € I. Let x1,29 € I and w2 > x7. Then using the Mean Value theorem for the function f on the

closed interval [z, z2] we get,
fl@2) = fla1) = f(e)(z2 — z1),
where ¢ € (21, x2). Now, f'(¢) > 0 and 23 — 21 > 0 imply that f(z2) > f(z1). Thus f is increasing on
1. On the other hand suppose that f is increasing on I. We want to show that f'(z) > 0for all z € I.
Observe that for small h, with h # 0
fle+h)— f(z)
h
f@) = flz+h)

>0,ifh >0
>0,ifh <0

Thus f'(z+) > 0 and f’(z—) > 0 which shows that f'(z) >0.
The proof of (iii) follows easily from the Mean Value theorem. O

The non-negativity of differentiability at a point does not induce the monotonicity. For example

consider the functionf : [-27,27] — R defined by

flz) = x+4x2sin(%), x#0
= 0, z=0.

Then f is differentiable on [—27, 2] and

J(z)= 1+8xsin(%) — 4 cos (%)7 T#0

= 1, z=0.

Thus f/(0) = 1> 0 but f is neither increasing nor decreasing in a neighbourhood of 0.

Motivation behind Taylor’s formula

Consider a polynomial p(z) in z of order n as

p(z) = ap + a1z 4 asx® + ... + apa™.
Putting = a + h and expanding each term in powers of h we get
(2) pla+h) =co+crth+ch® + ...+ cyh™,

where cg,c1,...,c, are constants independent of h. Putting h = 0 in equation (2) we get ¢y = p(a).
Differentiating (1) w.r.t. h and putting h = 0 we get ¢; = p’(a). Proceeding in this way differentiating

successively and putting h = 0 we get

1
¢ = Hpk(a) for eachk = 0,1,2,...,n.
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Thus the Taylor’s formula for polynomials is

h? h™
plath) = p(a) + hp'(@) + 0" (@) + o+ o (a).

This formula which holds for polynomials also holds for non-polynomial functions with some modifi-

cations provided they satisfy certain conditions. This was first observed by Taylor, a pupil of Newton.

Theorem 0.31 (Taylor’s formula). Let f : [a,b] — R be a function such that
() £, f5 f" ..., f* ! are continuous on the closed interval [a,b] and

(ii) £, f's f",..., [ exist on the open interval (a,b).

Assume that u,v are two distinct points in [a,b]. Define p : [a,b] — R as

_ 2 _ . \n—1
)= 50+ 0= ')+ C o e iy
Then there exists a point x between u and v such that
10) = (o) + L )
— 2 N n
b S0 = 100+ (0= 0 @)+ O g+ LS o) 4 2

The last term is known as the remainder term in Lagrange’s form.
Proof. Consider the function ¢ : [a,b] — R defined as

o(t) = F(E)—p(t) - Kt -w)",

where the constant K is chosen in such a way that ¢(u) = ¢(v). From the definition of p(t) it follows
that

PP(u) = fFu) Yk =0,1,2,...,n— 1.

Observe that ¢(u) = 0 and so we can choose K = fgf} up(”) Also we get, ¢(u) = ¢'(u) = -+ =
#"~1(u) = 0. The choice of K forces ¢(v) = 0 and so there exists ¥1 € (u,v) such that ¢(z1) = 0.
Since ¢(u) =0 and ¢'(x;) = 0 so there exists x5 between u and x; such that ¢”(z2) = 0. Proceeding
in this way we get x, between u and z,,_1 ( to be precise between u and v ) such that ¢™(x,) = 0.

Also we have for all ¢ € (a,b)
(1) = (1) - nIF.

This implies that K = I (Z") and so naming x,, = ¢ we get

f@) =p) _ fM@a) i py = (v—u)" .,
Ci - =i ) =)+ S @),
Thus there exists x between u and v such that
1) = 1)+ 0=+ C Ly e B oy O
’ 21 (n—1)!

Remark 0.32. This theorem can also be stated as Let f : [a,b] — R be a function such that

Q) £, f, f",..., fr~! are continuous on the closed interval [a, b] and
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@) f, f', f",..., [™ exist on the open interval (a,b).
Assume that u,u + h are two distinet points in [a, b]. Define p : [a,b] — R as

t—u 2 t—u n—1 _
p(t) = F() + (¢~ )+ o w4 T o,
2! (n—1)!
Then there exists a point x between u and u + h such that
hn n
f(“+h)*p(u+h)+m (@),
hn—l n

2
ie., flu+h)= f(u)+hf'(u)+ %f”(u) +...+ i) + %f"(x)

(n—1)!
As an application of Taylor’s formula we can find sufficient conditions for maxima or minima of a

function f under certain conditions.

Theorem 0.33. Let f : [a,b] = R and ¢ be an interior point of [a,b]. Assume that f, f', f" ..., ", [
exist and are continuous on (c — &,c+0) for some & > 0. Let f'(¢) = f"(c) = ... = f""1(c) =0 and
1) #0.

(i) Then f has a mazimum at ¢ if n is even and f™(c) < 0.

(ii) Then f has a minimum at ¢ if n is even and f"(c) >.0.

(iii) Then f has neither a mazimum nor a minimum if n is odd.

Proof. Let h # 0 be such that |h| < d. Then using Taylor’s formula we get,

et ) = F@O + b+ s+ i 4 M e om)
i S ) 2! S (=1 n! i ’

where 0 < 6 < 1. Since f"(c¢) # 0 and f” is continuous at ¢ so there exists d; > 0 such that f"(z) #0
for all z € (¢— 61, ¢+ 61). Choose do = min{d, &, }. Then for all h with |h| < §> we have f™(c+60h) # 0

and .
P+ 1)~ £(0) = " e+ om).
We further observe that f™(e+ 6h) preserves the sign of f™(c).
(i) Assume that n is even and f™(c) < 0. Then 2™ > 0 and f"(c+ 6h) < 0 so that

fle+h) = fle) <0, ice., flc+h) < fc), Vhwith|h| < 4.

Thus f has a maximum at c.
(ii) Assume that n is even and f"(c) > 0. Then A" > 0 and f™(c+ 6h) > 0 so that

fle+h) = fle) >0, ie., flc+h)> f(c), Vhwith|h| < 4.
Thus f has a minimum at c.
(iii) Assume that n is odd. First consider the case f™(¢) > 0. Then
fle+h)—fle) =L1f"(c+06h) >0,ifh>0
= b fr(c+0h) <0,ifh <0
Thus in a small neighbourhood of ¢ f(c¢ + h) — f(c) is positive at some point and negative at some

point which indicates that f neither has a maximum nor minimum at ¢. The case for f™(c) < 0 can

be dealt analogously. O
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Theorem 0.34 (Darboux Theorem). Let f : [a,b] — R be a function such that f is differentiable at
every point of [a,b]. If f'(a) <~y < f'(b) then there exists ¢ € (a,b) such that f'(c) =~.

Proof. Consider the function ¢ : [a,b] — R defined as ¢(z) = f(x) —~y2. Then ¢ is continuous on [a, b]
and ¢ is differentiable on [a, b]. Clearly ¢'(z) = f'(xz)—~, V& € [a,b]. Observe that ¢, being continuous
on a compact set [a,b], attains its minimum values at some point ¢ € [a,b]. Since ¢ is differentiable
at ¢ so we have ¢'(c) =0, i.e., f'(c) = . Observe ¢'(a) = f'(a) —y < 0 so we get ¢ # a. Also ¢ # b.
Thus ¢ € (a,b) and f'(c) = 7. O

Remark 0.35. (i) Note that we did not assume the continuity of the function f"'but f’ satisfies
the intermediate value property. The image of an interval under f’ is an interval. This is inherent
property of a differentiable function.

(ii) If f is differentiable on [a,b] then f’ can not have any simple discontinuities.

Example 0.36. Using Lagrange’s mean value theorem, show tha )<z, (2>0).

Solution. Conﬂider the function f : [0,00) — R defined as f(z) = log(1 +x).
Then f'(z) = 5.
mean value theorem, there exists € (0, 1) such that f(z (0) = f(6z) and so

Let z > 0. Now f is continuous on [0, z] and f’ exists on (0,z). So by Lagrange’s

log(1+ 2) = 1+92'

As 0 € (0,1) and 0z < z, it follows that 1 <1 + 0z <1+ z. Hence < < z. Thus

_Z
142 1+6’z

ﬁ<log(l+z)<zforz>0.

Example 0.37. Show that = < sin™!z < T (0<z <),

Solution. Consider the function f: [0,1) — R defined as f(z) = sin™'x — .
Then f'(z) = \/;T —1 >0, for z'€ [0,1). This implies that f(z) is a strictly increasing function in
[0,1) and so f(z) > f(0) for 0 < z < 1. As f(0) =0, f(z) >0 for 0 < z < 1. Hence sin 'z —x > 0
for 0 <z < 1 and so

z<sinlzfor0<a<l.

Next, consider the function g : [0,1) — R defined as g(x) = T sin~!z.

e — ) 1 I,
Then ¢ (#) = —fi=s vt Al it (W - 1) > 0, for # € [0,1). This implies that f(z)
is a strietly increasing function in [0,1) and so f(z) > f(0) for 0 < z < 1. As f(0) =0, f(z) > 0 for

0<x<1.Hencem—sm Lz >0for 0 <z <1 andso

T
sinTlez < ——for 0 <z < 1.

V1-—22

Therefore, 2 < sin™ ' x < wiet 0<z<1).

Example 0.38. Using Taylor’s formula, find the quadratic approximation of the function f(z) =

vid+zatxz=0.

Solution. Consider the function f : [~1,1] — R defined as f(z) = v4+ z.
Then f'(z) = 2«/@ >0, f'(z) = 7W. Clearly f, f’ are continuous on [0,1] and f, f', f" are

This article is written by Prof. Kallol Paul, Department of Mathematics, Jadavpur University for
UG I Math students 2024

o7



Sayan Das (July 6, 2024) Theory of Real Functions

Differentiability of real valued function

exists on (0,1). So by Taylor’s formula the quadratic approximation of the function f(z) =4+ x at

z=0is

P(z) = f(0) + @L + f'/?('(]) z2.

Now, f(0) =2, f’(0) = %, 1"(0) = —é. Therefore, the required quadratic polynomial is

1 1 .
P(@)=2+ -z — —a°.
(z) + 1° 5"
Definition 0.39 (Convex function). Let S C R be a convex set. Recall that a non-empty set S is
said to be convex if s1,s2 € S and ¢ € [0, 1] implies that (1 —¢)s; +tsy € S. A function f: S — R is

said to convex if for all s1,s2 € S and for all ¢ € [0, 1],

U@ = t)s1 +ts2) < (L—1)f(s1) + tf(s2)-

Geometrically, it means that the functional value of the line segment joining s; and s in the convex

set S lies below the chord joining (s1, f(s1)) and (s2, f(s2)).
Y

\
S

I
|
I
I
I
I
|
I
I
+ x
52

[ S

O S1

There is a nice connection between convexity and differentiability of a function on a convex set in
terms of the second derivative. Observe that a convex function is not necessarily differentiable. Look
at f:[—1,1] = R defined by f(z) = |z|. Then f is convex but f is not differentiable at 0. On the
other hand if we consider f :[0,7/2] — R defined by f(z) = sinx then f is differentiable but f is not

convex.

Theorem 0.40. Let f : (a,b) — R be twice differentiable on (a,b). Then f is convezr on (a,b) if and
only if f"(x) >0 for all x € (a,b).
Proof. Let f : (a,b) — R be convex. Consider z € (a,b). Then

fl@+h)=2f() + flz—h)
h? ’

" s
f(z) = lim
Consider h such that x + h,z — h € (a,b) and then by convexity of f we get

F@) = F(3l+ W)+ 5 =) < Sr+h) + 3 S =)

2
and this implies that
fle+h)=2f(z)+ fle—h) =0

Thus f"(z) > 0, Vz € (a,b). O
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Conversely assume f”(z) > 0 for all z € (a,b). Let u,v € (a,b) and t € (0,1). Let zg = (1 —t)u+tv.

Then using Taylor’s formula for the function f, there exists 1 € (u, o) such that

F(u) = Fao) + (= 20) ' (w0) + g (u — w0)* " (1)

Similarly there exists x5 € (20, v) such that

F) = Fwo) + (v = 20)['(z0) + o7 (v — o) (2).

So,
(1= ) +2f0) = Flo) + 0. z0) + (1 = )y (= 20)2 " (1) gy 0 5 20)* " (w2)
= f(xo) + M, (where M > 0)

Thus we get,
F((A=tu+tv) < (1 - B)f(u) +f(v), Yt € [0,1]
This shows that f is convex on (a,b).
The next example of a function is the one which breaks our intuitive notion of continuity of a

function. The example of such a function was first provided by Weierstrass. The geometric intuition

does not hold anymore that for non-differentiability a sharp edge or vertex is there.

Example of a nowhere differentiable but everywhere continuous function.

Theorem 0.41. There exists a function f : R — R such that f is continuous everywhere but differ-

entiable nowhere.

Proof. Define ¢(z) = |z| for —1 < z <1 and extend the definition of ¢(z) to all real z by ¢(z +2) =
¢(z). Then for all s,¢ such that

l6(s) — o) < |s — 1.

Clearly ¢ is continuous on R. Define

fla)y=>" (%)ndm(x) where ¢, (z) = ¢(4"z).

n=0

Since 0 < ¢ < 1.
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2+Y 21Y
é(2) 61(x)
1,, I
x x
-3 -2 -1 1 2 3 -3 -2 -1 1 2 3
—1 -1
21Y
$2(x)
’ z
-3 -2 -1 1 2 3
-1
4ij

31 @)= ()" ¢ul@)

=l

—1

By Weierstrass M-test the series Zf;o (%)ngivn(x) converges uniformly on R. Since each ¢, is contin-

uous so f is continuous.

Now fix a real number x and a positive integer m. Put

1 —m
Om = £547",
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where the sign is so chosen that no integer lies between 4™z and 4™ (x + d,,). This can be done, since
4™6,| = % Define
_ (" (z + 0m)) — ¢(4"2)
Tn = 5 )

when n > m then 4"4,, is an even integer, so that v, = 0 and when 0 < n < m |y,| < 4". Since

[Ym| = 4™, we conclude that

flx+6n) = fl@)] _ ’Z (§)"7
=0 4 "

6m
m—1
> -
n=0
1
= —(3™+1).
HELEN)
As 6, — 050 4, — 00. Hence f is not differentiable at x. O
Problems

(1) If f(x) = ||, then compute f'(x), f”(z) for.all realx and show that f(*)(0) does not exist.

(2) Let f: I — R be differentiable on an interval I. If f"is'bounded on I then f satisfies Lipschitz
condition on I.

(3

=

Suppose f is defined on an interval containing ¢ and f”(c) exists. Then show that

lim fle+h) —2f(0)+ f(c=h)
h2

h—0

= 1"(0).

Give an example to show that the limit on the left hand side may exist, even if f”(¢) does not
exist.

(4) Let f be defined for all real z, and suppose that

[f(z) = fW)] < (& —y)?

for all real x and y. Prove that f is constant.

(5) Suppose f is defined in a neighbourhood of x and suppose f”(z) exists. Show that
. f(fv‘kh)“'f(x*h)*Qf(I)_ 1"
f = = @)

Show by an example that the limit may exist even if f”(z) does not.

(6) If
1 Cnfl Cn
Co+—+--- —— =0
ot 2 oot n n+1
where Cy, ...,C, are real constants. Prove that the equation

Co+Crz+ -+ Cp12™ '+ Cra™ =0

has at least one real root between 0 and 1.
(7) Suppose f is defined and differentiable for every x > 0 and f’(z) — 0 as  — +oo. Put
g(z) = f(z+1) — f(z). Prove that g(z) — 0 as ¢ — +o0.
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(8) Suppose
(a) f is continuous for x > 0,
(b) f'(x) exists for x > 0,

(c) £(0) =0,
(d) f” is monotonically increasing.
Put @)
_ [
o) =" @ > 0)

and prove that g is monotonically increasing.
Suppose f'(x), ¢'(z) exist, ¢'(x) # 0 and f(x) = g(z) = 0. Prove that

W) @)

e g(t) ~ gx)

—~
o
=

(10

=

Suppose f'(x) > 0 in (a,b). Prove that f is strictly increasing in (a,b) and let g be its inverse
function. Prove that g is differentiable, and that

g'(f(z)) (a <@ <b),

1
@)
(11) Suppose f is differentiable in (a,b), (a < z < b), (v < an < By) for n = 1,2,3,... and
an — x, Bn — x. Show that the quotients
FBn)= flom)
Bn —
need not converge to f’(z), as n — oo, but that they do if we impose the additional assumption

that the sequence {(;ﬁ ”’:;))} is bounded.

(12) Using Lagrange’s mean value theorem, show that 7% < tan~lz <z, (>0).
(13) Use Lagrange’s mean value theorem to prove that |sinz —siny| < |z — y| for all z,y € R.
(14) Show that = + %z <log(l+z) <z — 2(1“”7;3), (x> 0).
2 2

(15) Show that sty <z —log(l+z) < %, (z > 0).
(16) Show that sinz lies between z — %3 and z — % + %.
(17) What is the third degree polynomial approximation of the function f(z) = e at 2 = 0.

. ‘s . . T 2 5zt
(18) Assuming the validity of expansion, show that sin(e® — 1) =  + G + 2.
(19) Suppose f and g are complex differentiable functions on (0,1) and f(x) — 0, g(z) — 0, f'(z) —

A,¢'(z) — B as © — 0, where A and B are complex numbers, B # 0. Prove that

flz) _A

(20) Suppose g is a real function on R!, with bounded derivative (Say |¢’| < M). Fix ¢ > 0 and
define f(z) =z + eg(x). Prove that f is one-to-one if € is small enough.

(21) Suppose f is differentiable function on (a, b). Then show that f is convex if f’ is monotonically
increasing.

(22) Let E be a closed subset of R.
(i) Show that there exists a continuous function f : R — R for which E = {z € R: f(z) = 0}.
(ii) Is it possible to find a function f which is differentiable on R such that £ = {x € R :
f(w) =0},

(ili) Can we find such a f which is n-times differentiable or is differentiable of all order?
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(23) Suppose f is differentiable on [a,b] and f(a) = 0. Assume that there exists a constant K such
that
|f'(@)] < K|f ()]
Prove that f(z) = 0 for all z € [a, b].
(24) Let f, g be differentiable functions on R and suppose that f(0) = ¢(0). If f/(z) < ¢'(z) for all
2 > 0 then prove that f(z) < g(z) for all = > 0.

DEPARTMENT OF MATHEMATICS, JADAVPUR UNIVERSITY, KOLKATA 700032, INDIA
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84 Taylor Theorems

84.1 Some one-dimensional Taylor theorems

Remark. By definition, a function f : R — R which is continuous at 0 looks like a
constant function near 0, in the sense that

f(t) = F(0) + €(b),

where €(t) — 0 as t — 0. By definition, again, a function f : R — R which is differen-
tiable at 0 looks like a linear function near 0, in the sense that

f(t) = f(0) + f(0)t + e(t) ],

where €(t) — 0 as t — 0. Taylor’s theorem establishes that a function f : R — R, if it
is (n — 1) times differentiable in a neighbourhood of 0 and n times differentiable at 0,
looks like a polynomial of degree n near 0, in the sense that

"(0) F(0)

f(t) = £(0)+ f'(0)t + th +o Tt” + e(t)|t]™,

where €(t) — 0 as t — 0.

Theorem 4.1 (A global Taylor's theorem)
If f:(—a,a) = R is n times differentiable with |f(™(t)] < M for all t € (—a,a),
then

N(o) .
'(O)t] <
J -

n g -
=0

n!

Theorem 4.2 (The local Taylor's theorem)
If f:(—a,a) — R, where a > 0 is (n — 1) times differentiable and £ (0) exists,
then

LI IG)) )
10 =3 00 + o,
=0

where €(t) — 0 then as t — 0.
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85 Advanced Calculus in One Real Variable

§5.1 Higher order derivatives
§5.1.1 Leibnitz rule
Theorem 5.1 (Leibnitz rule)

If f and g are n-times differentiable functions, then the product fg is also n-times
differentiable and its n'" derivative is given by

(fg)™ = Z <Z> FoR gk,

k=0

where f(@) is the j* derivative of f with f(© = f.

Proof. We proceed by induction on n.
For n =1, (fg)' = f'g + f¢'. This proves the base case.

Assume for our induction hypothesis that the theorem holds for a fixed n € ZT, i.e.

(o)™ =Y (’;) e

k=0

Then,

(fg)(n-l—l) _ [ L <Z> f(n_k)g(k)]
k=0

o (Z)JMH k) +Z<> k) g (k+1)
k=0

n n+1
— T\ e(n+1-k) (k) n (n+1—k) (k)
( k)f g™ +>" <k - 1>f g
k=0 k=1
n “ n _ "~ n Ll n o

_ <o> FEt) O 4 <k> FrHR g L 3 (k " 1) flott k>g(k>+<n> £0) (+)

k=1 k=1
_ ("t 1) 1) (0) . n | p(n+1-k) (k) n+1\ o) (n+1)
—(0>f g+k:1 roq) Tl g +n+1fg

_ (" N 1) FtD) g(0) 4 Z <n - 1) flrti=Rgk) 4 <n N 1) gt
0

- n+1
n+1
_ (’” 1) 1R (),
k
k=0
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Proposition 5.1 (Standard results)

We state some basic results.
1. Let y = z¥, then
y™ =D =k(k—1)---(k—n+1zF"= ——z*" vn ezt
In particular,
(i) if n = k € Z*, then y*) = k!;
(i) if k € Zt : k < n, then y™ = 0;
(iii) if k € Z* so that —k € Z~ and y = %, then

y = (_1)HWW'

|
3. y= — ™= (1 —C
Yot —a Z (=1) (x —a)ntl
1 n!
_ (n) _ (_1\n n
YT b Y (=1) (ax—i—b)”“a

§5.2 Concavity and inflection points

Remark. We know that f'(z) >0 = f(x) is increasing and f'(z) <0 = f(x) is
decreasing. Clearly then the sgn(f”(z)) tells us whether f’ is increasing or decreasing.
If 3z =29 € R: f'(xg) = 0, then zq is a critical point of f.

If f'(x0) =0 then
1. f"(xz0) <0 = f(x) has a local maxima at x = x.
2. f"(x9) >0 = f(z) has a local minima at z = x.

Even if f/(x) # 0 we can still extract some information about f(z) using the second
derivative.

Definition 5.1

concave

§5.3 Envelopes
§5.4 Curvature
§5.5 Asymptotes

§5.6 Integration by reduction formulas

Theorem 5.2 (Integration by reduction)
Let m, n € Z.
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Figure 1: (v —a)? +y? = 1.

1. If I,, = [sin™(x) dz then

—sin"~1(z) cos(x) N (n— ].)In_Q.

n n

I, =

2. If I,, = [ cos"(z) dz then

4. If I, = [ sec"(z) do then

sec"2(x)tan(z) (n — 2)In,2.

[ =
" n—1 n—1

5. If Iy, = [ sin™(x) cos™(z) dz then

sin™ " (x) cos” N (z)  (n— 1)Lnp2

m—+n m—+n

Im,n =

—sin™1(x) cos™ ! (z) N (m—1)Ip—2n

m—+n m—+n

Proof. 1. I, = /sin"(a:) dz = /sin"‘l(:c) sin(z) dx

= sin" "1 (z) /sin(a:) dz —/% (sin" () (/ sin(x) dx) dz

= —sin"" () cos(x) — /cos(x) ((n —1)sin"?(z)) (- cos(z)) d
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= —sin" () cos(x) + (n — 1) /sinn2(x) cos?(z) dx
= —sin" " }(z) cos(z) + (n — 1) /sin"Z(x) (1 —sin®*(z)) da

= —sin" () cos(z) + (n — 1) / (sin”_2(x) — sin"(z)) da

= —sin" ! (z) cos(z) + (n — 1)(Tn_2 — I,).
Thus, nl, = I, + (n — 1)1, = —sin" (z) cos(z) + (n — 1)I,_a.

2. I, = /cosn(x) dz = /cosn_l(m) cos(x) dx

= cos"1(z) /cos(:v) dz _/(;lrc (cos”_l(x)) </ cos(x) d:v) dz

= cos" 1 (z) sin(z) + /sin(m) (n—1) cos”_Q(m)) sin(z) dx
= cos"(z)sin(z) + (n — 1) /COSn_Q(J}) sin?(z) dz
= cos" !(z)sin(z) + (n — 1) /COSn_Z(l‘) (1 —cos®(z)) da

= cos" 1 (z) sin(z) + (n — 1)/ (cos"?(x) — cos”(z)) da
= cos" L (z)sin(z) + (n — 1)(I_z — I,).
Thus, nl, = I, + (n — 1)1, = cos™ (z) sin(x) + (n — 1)I,_2.
3. I, = /tan“(x) dz = /tan“_Q(x) tan?(z) dz

f'n—Q

_ / o) () i — / tan"2(z) da

dt

= / "2 dt — I,

t”_l
= | — In-2
tan"~!(z)
= — in—2.
n—1

4. I, = /sec”(m) dr = /sec"_Q(:U) sec?(z) dz

= SeCn_l(l‘)/SeC2(l‘) dx —/iv(sec"_l(:r)) (/ sec?(x) da:) dz

= sec" () tan(z) — (n — 2) /sec"_3(x) sec(x) tan(z) tan(x) dz

68



Sayan Das (July 6, 2024) Theory of Real Functions

= sec" !(x) tan(z) — (n — 2) /sec"z(aﬁ) tan®(z) dz
= sec" !(z) tan(z) — (n — 2) /sec”Q(x)(seCZ(x) —1)dz
= sec" () tan(z) — (n — 2) / (sec™(z) — sec”_z(x)) dzx

= sec" () tan(z) — (n — 2) / (I, — In—2).

_ / =) e o) ()

— sin™L(z) / cos™(z) sin(z) dz — / di (sin™ () ( / cos™ () sin(z) d:v) dz

x
O

§5.7 Parametric equations

§5.8 Parameterizing a curve

§5.9 Arc length of a curve

§5.10 Arc length of parametric curves
§5.11 Area under a curve

§5.12 Area and volume of surface of revolution.
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