Ex/SC/MATH/UG/MAJOR/TH/21/205/2025

B. Sc. Mathematics Examination, 2025

(2nd Year, 1st Semester)

MATHEMATICS

PAPER: MAJOR/205

(Riemann Integration and Series of Functions)

Time: Two Hours

Full Marks: 40

Use separate Answer-Scripts for each Part.

Symbols and Notations have their usual meanings.

PART—I (20 Marks)

Answer any three questions from 1 to 5 and one question from 6 to 7.

- 1. Let a function $f:[a,b] \to \mathbb{R}$ be bounded on [a,b]. Then show that f is R-integrable on [a,b] iff for each $\varepsilon > 0 \exists a \delta(>0)$ such that $U(p,f) L(p,f) < \varepsilon$ for every partition P of [a,b] with $||p|| \ge \delta$.
- 2. Let $f:[a,b] \to \mathbb{R}$ be R-integrable on [a,b]. If there exists a $R \in R^+$ such that $f(x) \ge R \ \forall x \in [a,b]$, then prove that $\frac{1}{f}$ is R-integrable on [a,b].

MATH-1051

[Turn Over]

- 3. (a) Show that $\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}$.
 - (b) If $f:[a,b] \to \mathbb{R}$ and $\phi:[a,b] \to \mathbb{R}$ are both R-integrable on [a,b] and f is monotone decreasing on [a,b], then show that \exists a point ξ in [a,b] such that $\int_a^b f(x)\phi(x)dx = f(a)\int_a^\xi \phi(x)dx + f(b)\int_{\xi}^b \phi(x)dx$.3+2=5 [CO1]
- **4.** (a) If $f:[a,b] \to \mathbb{R}$ is integrable on [a,b], then show that the function F defined by $F(x) = \int_a^x f(t)dt$, $x \in [a,b]$ is continous on [a,b].
 - (b) Show that [x] is integrable on [0, 3] and evaluate $\int_0^3 [x] dx.$ 3+2=5 [CO1]
- 5. (a) State Bonnet's form of 2nd M. V. T. in the integral calculus.
 - (b) The function f defined by

$$f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x \le \frac{1}{n} (n = 1, 2, 3, ...) \\ 0, & x = 0 \end{cases}$$

Show that f is R-integrable on [0, 1]. Evaluate $\int_0^1 f dx$. 1+4=5 [CO1]

6. Examine the convergence of $\int_0^1 x^{m-1} (1-x)^{n-1} \log x \, dx$.

5 [CO2]

MATH-1051

[Continued]

- 7. (a) Find $\int_0^1 \frac{dx}{(1-x^3)^{\frac{1}{3}}}$.
 - (b) A function f is defined on $[1, \infty)$ by $f(x) = \frac{(-1)^{n-1}}{n}$ for $n \le x < n+1 \ (n=1, 2, 3,)$. Examine the convergence of $\int_{1}^{\infty} f(x) dx$. 2+3=5 [CO2]

PART—II (20 Marks)

1. Answer any one question:

 $4 \times 1 = 4$

- (a) Using the definition of uniform convergence of sequence of functions, prove that the sequence of functions $\{f_n\}$ defined by $f_n(x) = \tan^{-1} nx$, $\forall x \ge 0$, $\forall n \in \mathbb{N}$ is uniformly convergent on [a, b] for all b > a > 0 but the sequence of functions $\{f_n\}$ is not uniformly convergent on [0, b] for any b > 0. 3+1=4 [CO1]
- (b) Show that the sequence of functions $\{f_n\}$ defined by $f_n(x) = x^n, x \in \mathbb{R}$ is point-wise convergent for $x \in (-1,1]$ and in this case find $\lim_{n\to\infty} f_n(x)$. Using the definition of uniform convergence of sequence of functions, prove that the above sequence of functions is uniformly convergent on [0, b] for all 0 < b < 1 but the sequence of functions $\{f_n\}$ is not uniformly convergent on [0, 1].

MATH-1051

[Turn Over]

2. Answer any two questions:

 $4 \times 2 = 8$

- (a) Let $\{f_n\}$ be a sequence of functions defined on $E(\subseteq R)$. If $\{f_n\}$ is point-wise convergent to f on $E(\subseteq R)$ and $M_n = \sup_{x \in E} |f_n(x) - f(x)|$ exists for all $n \in \mathbb{N}$, then $\{f_n\}$ is uniformly convergent to f on E if and only if $M_n \to 0$ as $n \to \infty$.
- (b) Let $\{f_n\}$ be a sequence of functions defined on $E(\subseteq R)$. If $f_n(x) \le M_n \forall x \in E$ and $\forall n \in N$ and $\sum_{n=1}^{\infty} M_n$ is convergent, then $\sum_{n=1}^{\infty} f_n(x)$ is uniformly convergent on $E(\subseteq R)$.
- Let R > 0 be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$. Then prove that the radius of convergence of $\sum_{n=1}^{\infty} n a_n x^{n-1} =$ the radius of convergence of $\sum_{n=1}^{\infty} \frac{a_n}{n+1} x^{n+1} = R$. 2+2=4 [CO2]
- 3. Answer any one question:

 $4\times1=4$

(a) Show that the series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on [0, 1], where

$$f_1(x) = \frac{x^2}{1+x}, \ f_n(x) = \frac{nx^2}{1+nx} - \frac{(n-1)x^2}{1+(n-1)x} \, \forall \, n-1 \in \mathbb{N}$$

4 [CO3]

MATH-1051

[Continued]

(b) Find the radius of convergence of the following power series:

4 [CO3]

$$\frac{1^2}{4^2} \frac{x}{3} + \frac{1^2.5^2}{4^2.8^2} \left(\frac{x}{3}\right)^2 + \frac{1^2.5^2.9^2}{4^2.8^2.12^2} \left(\frac{x}{3}\right)^3 + \frac{1^2.5^2.9^2.13^2}{4^2.8^2.12^2.16^2} \left(\frac{x}{3}\right)^4 + \dots$$

4. Answer any one question:

 $4 \times 1 = 4$

- (a) Assuming the power series expansion of $(1+x^2)^{-1}$, obtain the power series expansion of $\tan^{-1}x$ and hence obtain the sum of the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1}.$ 3+1=4 [CO4]
- (b) Express $f(x) = x(\pi x)$, $0 < x < \pi$ as (i) Half-Range Fourier cosine series and (ii) Half-Range Fourier sine series by constructing two functions g(x) and h(x) of periodicity 2π , where g(x) is even and h(x) is odd. 2+2=4 [CO4]

