## Algebraic Number Theory

## Mahesh Kakde NPTEL, IISc

## Final exam

**Question 1.** Define a Dedekind domain. State the Chinese Remainder Theorem for Dedekind domains. Prove that a Dedekind domain with finitely many prime ideals is a principal ideal domain.

**Question 2.** State the Minkowski bound for a number field. Hence compute the ring of integers and the ideal class group of  $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{-5})$  and  $\mathbb{Q}(\sqrt{5})$ .

**Question 3.** Let  $\alpha$  be a root of  $X^3 + X + 1 = 0$ . Then show that  $\{1, \alpha, \alpha^2\}$  is an integral basis of  $\mathbb{Q}(\alpha)$ .

**Question 4.** Compute the discriminant of  $\mathbb{Q}(\sqrt{2})$  and hence for every rational prime p find the prime decomposition of p modulo the discriminant of  $\mathbb{Q}(\sqrt{2})$ .

**Question 5.** Find a fundamental unit in (i)  $\mathbb{Q}(\sqrt{6})$  and (ii)  $\mathbb{Q}(\sqrt{5})$ .

Question 6. Are  $\frac{\sqrt{5} + \sqrt{17}}{2}$  and  $\frac{\sqrt[3]{2} + 1}{3}$  algebraic integers? Justify.

Question 7. Show that  $X^3 - 6 = 0$  has a root in  $\mathbb{Q}_7$ .

**Question 8.** Let  $\|\cdot\|$  be a non-Archimedean valuation on the field  $\mathbb{Q}$ . Show that  $\|m\| \leq 1$  for every  $m \in \mathbb{Z}$ .

Question 9. Find all primes that are totally ramified in the number field  $\mathbb{Q}(\sqrt{5}, \sqrt{17})$ .