1 Algebraic Number Theory

References:

- 1. A Brief Guide to Algebraic Number Theory by Peter Swinnerton-Dyer.
- 2. Algebraic Theory of Numbers by Pierre Samuel.
- 3. Number Fields by Daniel Marcus.
- 4. Algebraic Number Theory by Jürgen Neukirch.
- 5. Local Fields by Jean-Pierre Serre.
- WEEK 1: Study of number fields, definition of the ring of integers. Definition of norm and trace.
- Week 2: Definition of absolute and relative discriminant. Computation of discriminant. Computation of the ring of integers.
- WEEK 3: Definition and properties of Dedekind domains. Proof that the ring of integers is a Dedekind domain. Factorisation of extension of prime ideals in a finite extension of number fields.
- WEEK 4: Embeddings of a number field in complex numbers. A result from geometry of numbers. Finiteness of class groups.
- WEEK 5: Computation of class groups, including several examples. Applications to Diophantine equations of computations of class groups.
 - Week 6: Dirichlet's unit theorem.
- WEEK 7: Extension and norm of ideals in field extensions. Maps between class groups of extensions. Decomposition subgroups, inertia subgroups, Frobenius elements etc. Localisation, residue field.
- Week 8: Valuations in a number fields. Local fields. Hensel's lemma and applications.
- Week 9: Field extensions of local fields, ramification, different, inertia subgroups etc.
- Week 10: Study of special number fields. Imaginary quadratic fields, real quadratic fields, cubic fields, cyclotomic fields.
- Week 11: Definition of ray class field as a generalisation of ideal class group. Some statements from class field theory without proofs.
- Week 12: Definition of zeta functions and L-functions. Statements of their analytic properties without proofs. Dirichlet Class number formula.