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Syllabus

Dual spaces. — Dual spaces, dual basis, double dual, transpose of a linear transformation
and its matrix in the dual basis, annihilators. Eigen spaces of a linear operator, the minimal
polynomial for a linear operator, diagonalisability, invariant subspaces and Cayley-Hamilton
theorem.

Inner product spaces and orthogonality. — Inner product spaces and norms, Gram-
Schmidt orthogonalisation process, orthogonal complements, best approximation, Bessel’s
inequality, the adjoint of a linear operator. Normal, unitary, self-adjoint and positive
operators. Orthogonal projections and Spectral theorem.

Determinant and generalised inverses. — Characterisation of determinant as multi-
linear function, Generalized inverses of rectangular matrices, Moore-Penrose (MP) inverse,
Singular value decomposition (SVD) of a matrix. reduced SVD, nearest low rank matrix,
applications of SVD.
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CHAPTER 1.

Dual spaces

1.1. Dual spaces

1.1.1. Linear functionals. — Vector spaces arise naturally from the set of solutions to a
system of linear equations (hence why they’re also called linear spaces). The dual space of a
vector space arises from the set of linear functionals over a vector space. Linear functionals
are the foundation of the subject of functional analysis and find applications in the theory of
distributions as well as quantum mechanics. Let V, W be two F-vector spaces. Consider the
set of all T : V' — W such that T is a linear transformation. Denote this set by £(V, W), i.e.,

LV, W)= {T VoW ‘ T is 1inear}.

As linear transformations are homomorphisms between vector spaces, L(V, W) is oft denoted
Hom(V, W). This £L(V, W) forms an F-vector space, where forall f,g € LV, W), A€ Fv eV

(f +9)(v) = f(v) +g(v),
(Af)(v) = Af(v).

If V and W are finite-dimensional with dim(V') = m, dim(W) = n, then V 2 F" W = F”
and Vx W 2V @ W.! Thus V x W = F™"_ In particular, we have £(V, W) = F™*"_thus
dim(L(V,W)) = mn. If W = F, we call the elements of L(V,F) linear functionals. More
concretely, a linear functional on an F-vector space V is a function f : V — F such that
f()\l.lf] + )\2.%‘2) = Alf(xl) + )\Qf(l‘g) for all z1,22 € V, A1, X € F.

1.1.2. Example. — Let P = C[t] be the C-vector space of all complex polynomials in ¢,
and when we specify a subscript n (so P,) with degree at most n. Define f(z(t)) = x(0) (the
constant term) of every polynomial z(t) € P. This is a linear functional f : P — C. More
generally, for any n scalars A1,..., A\, € C and real tq,...,t, the function

f@(®) = Xz(ta) + -+ Anz(tn)

is a linear functional f € L(P,C).

Another linear functional, in a sense a limiting case of the above, is obtained as follows.
Let (a,b) be an open interval on the real t-axis and let g(t) : (a,b) — C be integrable; for a
complex-valued function such as g we simply have [g = [R(g) + ¢ [ 3(g). Then

defines a linear functional f € L(P,C).

lRecall that U = V@ W if U = V+ W and VN W = {0}. Or equivalently, if U = V + W and the
representation of every w € W as u 4+ v,u € U,v € V is unique.




1.1. DUAL SPACES

1.1.3. Example. — Let C[0, 27] be the vector space of all continuous f : [0, 27] — R. Then
for any g(t) € C0,27] we have that the nth Fourier coefficient h(z(t)) of z(t) € C|0, 27],

1

T or

27
W) = 5= [ sty
0
is a linear functional on C10,27]. So h € L(C|[0, 27],R).
In general we have linear functionals n € £(Cla, b],R) defined by (for fixed go € C|a, b)),

b
nJH/ﬂwww

1.1.4. Example. — Let C"(U) be the subspace of RV for a subset U C R consisting of
all n-times differentiable f : U — R. Then the differential operator D : C"(R) — R sending
f+— f'is a linear functional D € £L(C™(U),R).

Let C>°(U) denote the vector space of all infinitely differentiable functions f € RY where

U is a compact subset of R. Then a distribution on U is a continuous linear functional
feL(C>=(U),R).

1.1.5. Example. — Let tr : F**™ — F be the trace of a square matrix of order n, defined as
n
tr <(aij)1<i<n) = Z ai;. Then tr(AA + pB) = Atr(A) + ptr(B), so it is a linear functional
IS i=1
on F™*" je., tr € L(F™*™ F).
1.1.6. Example. — Given a field F, F" is an n-dimensional F-vector space. The inner
U1 w1
product v-wofv= 1| | ,w=| : € F" is the scalar v -w = vTw = Z?Zl viw; € F.
Un Wn,

Hence any v € F" defines a linear functional in £L(F",F) by w +— v - w. The exterior
product is defined as v A w = vw? € F**". In the Dirac notation of quantum mechanics,
inner products are called bra-ket products while exterior products are called ket-bra products.

1.1.7. Example. — Let V be a finite dimensional F-vector space with dim(V) = n and
B =A{z1,...,2,} be an ordered basis for V. Let the coordinate vector of x wrt 8 be
ay
as
[x],B - :
an

Then for each 1 < i < n, we define the ith projection map f;(x) := a;, which yields the
linear functionals f; € L(V,F). In particular, the linear functionals f;(x;) = d;; yield exactly

the Kronecker delta
fy=ql TI=T
0 ifi#y

1.1.8. Definition (Linear functional). — A linear functional on an F-vector space V' is a
linear transformation from V to its field of scalars, i.e., f : V — F. Equivalently, f € L(V,F).
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1.1.9. Definition (Dual space). — For an F-vector space V, the dual space of V is the
vector space of all linear functionals on V, i.e., V! = L(V,F).

1.1.10. Theorem. — Let V be a finite-dimensional F-vector space. Then dim(V) =
dim (V).

Proof. dim(V’) = dim(L(V,F)) = dimp(V) dimp(F) = dim (V). O
1.1.11. Definition (Dual basis). — Let V be an F-vector space and B = {v1,va,...,0,}

be a basis of V. Then the dual basis of B is the set B’ = {¢1, ¢a, ..., ¢, } of elements of V',
where each ¢; is a linear functional on V s.t.

1 ifj=i
(MUJ){O if j # .
1.1.12. Example. — The dual basis of the standard basis {ey,...,e,} of F™ is {¢1,..., ¢dn}
where
1 ifj=i
pile;) = e
0 ifj#i.

1.1.13. Example. — The dual basis of the standard basis {(0,1), (1,0)} of R? is {¢1, ¢}
where

$1(1,0) =1, $2(1,0) =0
$1(0,1) =0, $2(0,1) =1

and as a linear functional is of the form ¢(z,y) = ax + by, we get ¢1(x,y) = x, d2(x,y) = .
1.1.14. Question. — Find the dual basis of:

1. {(=1,2),(0,1)} of R%. Ans. {¢1, 2} given by ¢1(x,y) = —x, ¢2(z,y) = 22 + .

2. {(2,1),(3,1)} of R%. Ans. {¢1,¢2} given by ¢1(x,y) = —x + 3y, ¢a(x,y) = x — 2y.

3. {(1,0,-1),(~1,1,0),(0,1,1)} of R®. Ans. {¢1, 2, d3} given by

¢1(9071/»Z) = %(x-i-y— 2)7 gbg(l‘,y,Z) = %(—.T-i-y— 2)7 gbg(ﬂ?,y,Z) = %(x—’—y—"_z)

The next result shows that the dual basis of a basis of V' consists of the linear functionals
on V that yield the coefficients for expressing a vector in V' as a linear combination of the
basis vectors.

1.1.15. Theorem. — Suppose {v1,...,v,} s a basis of V and {¢1,...,¢n} is the dual
basis. Then
v=¢1(V)v1 + -+ Pp(v)v, Vv EV. (1.1.1)

Proof. Since v € V and {vy,...,v,} is a basis of V, there exist A1,..., A, € F s.t.
v =AU+ -+ AUy

Then for i = 1,...,n we have ¢;(v) = A;. O
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The next result shows that the dual basis is indeed a basis of the dual space.

1.1.16. Theorem. — Let V be a finite-dimensional F-vector space. Then the dual space
of a basis of V is a basis of V'.

Proof. Suppose {v1,...,v,} is a basis of V and {¢1,...,¢,} is the dual basis. Then to show
linear independence, suppose there exist Aq,..., A, € F s.t.

Ad1+ -+ Ay = 0.

But for each k =1,...,n we have

(>\1¢1 + -+ An¢n)(vk) = Ak

Thus, Ay = -+ = A, = 0. So {¢1,...,0,} is a linearly independent set in V' with
n = dim(V’) elements. Hence, {¢1,...,¢,} is a basis of V. O

1.1.17. Question. — Let A, B € O(n), ? s.t. det(A) + det(B) = 0.
Show that A + B ¢ GL,(R). 3

Solution. As A and B are real orthogonal and det(A) = — det(B), we have
det(A) det(B) = —1.
Hence, det(A + B)
=det (A(B" + AT)B) = —det(B" + A") = —det (B+ A)") = —det(B + A)

and the assertion follows. O

cosf  sin 9>

1.1.18. Question. — Let A € SO(2). 4 Show that there exists § s.t. A = .
—sinf cosf

Solution. In order for a matrix to be in SO(2), it has to be (a) orthogonal, and (b) have
determinant 1.

For (a) we need in particular that each row is a unit vector. Every unit vector has the
form (cos @, sin #) for some 6, so our matrix necessarily has the form

cosf sinf
cos¢ sing¢
In addition the rows must be perpendicular to each other. Our two unit vectors are

perpendicular if and only if ¢ = 6 £ 7, up to irrelevant multiples of 27. By some basic

trigonometric identities, this means that the possibilites are now

cosf  sind d cosf sind
—sinf cosf an sinf —cosf
The first of these always has determinant 1, so it is in SO(2). The second has determinant
—1, so it is not in SO(2). O

2orthogonal group of order n i.e. orthogonal matrices of order n
3general linear group of order n i.e. invertible matrices of order n
4special orthogonal group of order 2 i.e. orthogonal matrices of order 2 and determinant 1
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1.1.19. Question. — Let A, B € O(n) where n is odd s.t. det(A) = det(B). Then show
that A — B ¢ GL,(R).

1.1.20. Question. — Let A € GL,,(R) s.t. sum of each row (resp. column) of A is r (resp.

c). Show that the sum of each row (resp. column) of A=!is =1 (resp. ¢71).

1.1.21. Definition (Dual map or transpose map). — Let V1, Vo be two F-vector spaces

and T € £(V4,V2). Then the dual of T is a linear map 7" € L(Vy, V) defined by
T'(¢p)=¢oT VoeVs. (1.1.2)

In particular, T(¢) € V7.

1.1.22. Proposition. — Dual map is a linear map.

Proof.

T'(Ap1+ ¢2) = (Ap1 + ¢2) o T
=(Ap10T) + (¢207)
=AN¢10T) + (¢20T)
= MT"(¢1) + T'(¢2).

O
1.1.23. Theorem (Properties of dual map). — Let T' € £(V1, V). Then,
1. (S+T)=5+T VSeL£(Wh,Ve).
2. (ANT) =)XT" VAeP.
3. (ST) =T1'5" VS e LW, Va).
Proof. 1.
(S+T)(9) = ¢o(S+T)
— (p08)+(¢oT)
= 5'(¢) +T'(9).
2.
(AT)'(¢) = ¢ o (AT)
=XN¢oT)
= \T'(¢).
3.
(ST)(6) = 6o (ST)
—(poS)oT
=5'(¢)oT
=T'(5'(9))
= (T"S")(@)-
O
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1.1.24. Definition (Annihilator). — Let V be an F-vector space and W be a nonempty
subset of V. Then the annihilator of W, denoted by W°, is defined by

We={peV' :¢p(w)=0 YweW}. (1.1.3)
1.1.25. Proposition. — W?° is a subspace of the dual space V.
Proof. Let ¢1,¢2 € V' and A € F.

01,92 € W° = Ad1(w) = Po(w) =0 YweW
= (Ad1 + ¢2)(w) = A1 (w) + ga(w) =0
= A¢p1 + ¢3 € we.

O

1.1.26. Example. — In R, with standard basis {ey, ez, €3, €4, €5}, let the corresponding
dual basis be {¢1, ¢2, @3, P4, @5} of (R%)'.
Let W = span(es, e2) = {(21,22,0,0,0) : 1,22 € R}. Then W*° = span({¢s, ¢4, ¢5}).
dim(W) = 2,dim(W°) = 3 so dim(W°) = dim(R%) — dim(W). Every ¢; (i = 1,...,5) is
such that
Gi(w1, w2, T3, T4, T5) = 4.

Let ¢ € span({¢s, 4, ¢5}) then there exist A1, Ao, A3 € R s.t.
& = A193 + Aads + A395.
If = (21,22,0,0,0) € W then
¢(0)
= AM163(0) + X294(0) + A3¢5(D)
=0+04+0=0€eW°.

Thus, span({¢s, ¢4, ¢5}) C W°.
Let (b S WO? then

¢ = A3+ Aads + A3ds.
Asey € W and ¢ € W°,

per) = (Mgs + Aags + Azs)(e1)
= Mgs(e1) + Aaga(er) + Azos(er)
=\ €R.

Thus, W° = span({¢s, 4, ¢5}).
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1.1.27. Theorem. — Let V be a finite-dimensional F-vector space and W a subspace of
V. Then
dim(W°) = dim(V) — dim(W). (1.1.4)

Proof. Let i : W — V be the inclusion map defined by i(w) =w Yw € W.
Then 4 is a linear map and the dual map ¢’ : V/ — W’ is a linear map too. By rank-nullity
theorem, °
dim(keri’) + dim(im4") = dim(V").

Now, keri’ = W*° so dim(ker i) = dim(W°). Also dim(V") = dim(V'). Then,
dim(W°) + dim(im ") = dim(V).

If € W’ then ¢ can be extended to a linear functional ¢ on V. Now, i’ () = ¢ 0 i = ¢,
which implies that ¢ € im4’ so W/ C im4’. Also, imi’ C W/, so im¢ = W',

Using dim(W) = dim(W’), we get dim(W°) = dim(V') — dim(W). O
1.1.28. Theorem. — Let V be a finite-dimensional F-vector space and W a subspace of
V. Then

1. We={0} <= W =V.
2. We=V' — W =/{0}.
Proof. Using Theorem 1.1.27,
We = {0}
— dim(W°) =0
— dim(V) = dim(W)
—= V=W
Similarly,
we =V’
< dim(W°) = dim(V’) = dim(V)
— dim(W) = dim(V) — dim(W°) =0
— W ={0}.

Srank(T) = dim(im T), nullity(T) = dim(ker T').
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1.1.29. Theorem. — Let V4, Vs be two F-vector spaces and T € L(V1,Vs). Then
1. ker T = (im T")°.
2. dim(ker T") = dim(ker T') 4+ dim(V3) — dim(V4).

Proof. 1. By definition, 77 : Vi — V/ so

¢ — ¢oT
¢ ekerT" = T'(¢) =0
= ¢oT =0
= (¢oT)(v) =0 YveV
= ¢ (imT)°.

So ker " C (imT)°. Now,

¢ € (imT)°
= (poT)(v)=0 YveVW
= ¢oT =0

= T'(¢p)=0 = ¢ kerT".

Thus, ker 77 = (im T)°.

dim(ker 7") = dim((im 7')°) = dim(V2) — dim(im T")
= dim(V2) — (dim (V1) — dim(ker T'))  (by rank-nullity theorem)
= dim(ker T') + dim(V3) — dim(V1).

O

1.1.30. Theorem. — Let V1, Vs be two F-vector spaces and T € L(V1,Va). Then T is
surjective <= T’ is injective.

Proof. T is surjective so imT = V5. Now,

imT =V, < (imT)° = {0}
<= kerT'" = {0}

which is equivalent to saying that T" is injective. O
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1.1.31. Theorem. — Let V4, V5 be two F-vector spaces and T € L(V1,Vs). Then
1. dim(imT") = dim(im T').
2. imT'" = (kerT)°.

Proof.

= dim(Vy) — dim((im T)°)
= dim(Vy) — dim(V2) + dim(im 7).
Hence, dim(im7") = dim(im T"). For the second part, let ¢ € im T".
Then 3¢ € V5 s.t. ¢ =T'(¢).
Now, if v € ker T' then

6(v) =0 = T'((v)) =0

So ¢ € (kerT)°. Now,

dim(im7") = dim(im 7") = dim(V;) — dim(ker T') = dim((ker 7)°).

O
Alternative proof of T injective < T’ surjective.
T is injective <= kerT = {0}
— (kerT)° =V/
<~ imT' =V].
O
1.1.32. Definition (Matrix representation of dual maps). — Let V] be a finite-dimensional
F-vector space with an ordered basis f; = {vi1,...,v,} along with its dual ordered basis

BL =A{¢1,...,0,} of V{. Let Vo be another finite-dimensional F-vector space with an ordered
basis B2 = {u1,...,un} along with its dual ordered basis 85 = {¢1,...,¥m} of V3.
Let T': Vi — Vs have matrix m(T") while 77 : V§ — V{ has m(T”"). Then
B B2 B4 B1

1.1.33. Remark. — This is why dual map is also called transpose map. Also, matrix
multiplication is defined the way it is so that

m(ST) = m(S)m(T) holds.
1.1.34. Theorem. — Let Vi, V; be two F-vector spaces and T € L(V1,Vs). Then

m(T") = (m(T))" . (1.1.5)
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1.1.35. Theorem. — Let A € F™*™. Then column rank of A = row rank of A.
Proof. Let A =m(T) where T € L(F",F™). Using dual map then,

column rank of A

= column rank of m(T)
(1)

= column rank of (m(T))”

= column rank of m

= row rank of m(T).

O

1.1.36. Remark. — Rank is invariant under row reduction since RREF is unique.
1.1.37. Definition (Double dual space). — Let V be an F-vector space and V' be the
dual space of V. The dual space V" of V' is the double dual space of V.
1.1.38. Theorem. — V X V",
Proof. Define T : V. — V. Then T, (¢) = ¢p(v) Vv e V. O

This is independent of choice of basis. If V' is finite-dimensional, then dim(V) =
dim(V’) = dim(V").
1.2. Invariant subspaces
1.2.1. Definition (7T-invariant subspace). — Let V be an F-vector space and T: V — V

be a linear operator. Let W be an F-subspace of V. Then W is called T-invariant or
invariant under T if T(W) C W.

1.2.2. Remark. — This is analogous to the notion of a characteristic subgroup H of G
which is a subgroup s.t. f(H) C H for every automorphism f: G — G.

Inner automorphism is defined: fy(z) = gzg™! Vz € G.

Normal subgroups are invariant under inner automorphisms, but characteristic subgroups
are invariant under any automorphisms. Hence, every characteristic subgroup is normal but
the converse is not true.

T-invariant subspaces. — Thus, for a T-invariant subspace W, T'(w) € W for all w € W.
The restriction of T to W is a linear operator over W.

Trivially, {0}, V are always invariant subspaces of V.

Further for any linear operator T' € L(V),

kerT={z eV :T(w)=0}, imT={T(x):zeV}

are invariant under 7.
Let x € ker T. Then

T(x)=0 = T(T(x))=T(0)=0 = T(z) € kerT.

So, T'(ker T') C ker T'. Similarly, T(im7T) C imT.
If T is a nonsingular (invertible) linear operator, then ker T' = {0} and im T = V.

10
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1.2.3. Question. — Let V = R? over R and define f1, fo, f3 € V' as follows:
fl(xvyaz) = x—2y,f2(x7y,z) = w-l—y-l—z,fg(x,y,z) =Y - 3z.

Show that {fi, fa, f3} is a basis for V' and then find a basis of V for which it is the dual
basis.

Solution.

Afi+Aefa+Asfs =0
= Mi(z—2y)+ (z+y+2)+A3(y—32)=0
= M+ X))+ A+ A3—2\)y+ (A2 —3A3)2=0
= X = A1, 3Aa+ A3 =0, Ay =3)3
solving which yields Ay = Ay = A3 = 0.

Let B = {v1,v2,v3} be a basis of V for which {f1, f2, f3} is a dual basis. Then, using
Definition 1.1.11, we get that

p{(2 31\ (33 1) (1 1 -3
“W\5'10010)\5710°10/) ' \5°10°10 ) |~

1.2.4. Question. — Let V be an F-vector space, T' € L(V') and W a subspace of V.
Prove that W is T-invariant in V <= W?°is T’ in V.

Solution. Let W be T-invariant subspace of V. Then T(W) C W. So T(w) e W Yw € W.
Now, Yw € W, f € W°,

(T'(f)(w) = (f o T)(w)
= f(T(w))
=0 feW’,T(w) e W.
SoT'(f) e We,ie. T/(W°)C W°.
Conversely, suppose that T77(W°) C W°. Then T'(f) e W° Vf e W°.

If T(w) ¢ W for some w € W then 3f € W° : (foT)(w) #0 = T'(f) ¢ W°.
Absurdity. Hence, T'(w) € W Yw € W. O

1.2.5. Question. — Let V = {a + bx : a,b € R}. (real polynomials with deg < 1.)
Find a basis {vy,ve} of V which is dual to the basis {¢1, p2} of V' defined by

1 2
_ d, _ dz.
(@) = [ sz oa@) = [ faas
Solution. Let v1 = a + bx, vy = ¢+ dx.
Then ¢;(v1) = 1, ¢1(v2) = 0 while ¢(v1) = 0, d2(v2) = 1.

Integrating and solving the the resulting system in each case, we get

-1
v =2 — 2z, v2=7+x.

11
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1.2.6. Question. — Let V be an F-vector space and Wy, W5 be two subspaces of V.
Prove that

1. (Wi +Wa)e =Wenws.
2. WLNWy)° =We +Ws.
1.2.7. Question. — Let ¢ : R? — R be a linear functional defined by
dlxz,y) =2 —2y Vr,yeR
Find the dual map for each of the following operators on R2,
L T(z,y) = (x,0).
2. T(x,y) = (y, +y).

3. T(x,y) =

(z,
(
(22 — 3y, 5z + 2y).
)

Solution. (T'(¢

¢(x,0) =
Py, x+y)=y—2r—2y =2z —y.
d(2x — 3y, 5x + 2y) = 20 — 3y — 10z — 4y = —8x — Ty.

)(z,y) = (9o T)(2,y) = ¢(T(2,y))

12



1.3. DIAGONALISATION OF A LINEAR OPERATOR

1.3. Diagonalisation of a linear operator

Eigenvalues and eigenvectors. —

For real square matrices A € R"*™ | Let V be a finite-dimensional F-vector space
we had A € R is an eigenvalue of A then U = {\v : X € F} = span(v)
if Ax = Az for some z # 0. is a subspace of V' of dimension 1.

If U is invariant under a linear operator T' : V' — V then T'(uv) € U Vu € U. Thus,
T(u) = Au for some scalar A € F.
Then span(u) is a 1-dimensional T-invariant subspace of U.

1.3.1. Definition (Eigenvalue of a linear operator). — Let T be a linear operator on V' and
U be T-invariant in V. If T'(u) = Au holds for some u € U : u # 0 then A is an eigenvalue
of T.

1.3.2. Example. — Let T € L(R?) s.t. T(x,y,2) = (Tz + 32,3z + 6y + 92, —6y).
Then T'(3,1,—1) = (18,6, —6) = 6(3,1,—1). So A = 6 is an eigenvalue of T.

1.3.3. Theorem. — Let V be a finite-dimensional F-vector space. Then the following are
equivalent for T € L(V),

1. X\ is an eigenvalue of T.
2. T — M is not injective.b
3. T — A is not surjective.
4. T — X is not bijective.
5. det(T' — AI) = 0. In other words, T — X is singular.
Proof. (1.) <= (2.):
Jv#0st. T(v) =l
— (T-X)w)=0

< ker (T — \I) # {0}
<= T is not injective.

(2.) <= (3.) <= (4.): Follows from the fact that
T — M\ is injective <= T — A is surjective <= T — AI is bijective.

(5.) <= (1.):
det(T'— M) =0
<~ (T —-X)(v)=0
— T) =M
for some v # 0. O

6] is the identity operator I : V — V s.t. = +— x.

13



1.3. DIAGONALISATION OF A LINEAR OPERATOR

1.3.4. Theorem. — Let V be a finite-dimensional F-vector space and T € L(V'). Let v # 0
be an eigenvector of T corresponding to an eigenvalue \. Let N € F. Then Nv is also an
eitgenvector of T' corresponding to the same eigenvalue .

Proof.

T(Nv) = NT(v)
= \(\v)
=\
=\
= A\'v).

1.3.5. Example. — Let T € L(F?) s.t. T(z,y) = (—y, z).

For F = R, there is no A € R: T'(v) = Av so no real eigenvalues.

But for F = C, T has eigenvalues A = =i. This is a reflection of the fact that C is
algebraically closed.

Eigenvalues of a linear operator 1" always exist iff F is an algebraically closed field. The
eigenvalues of T satisfy some polynomial

fl@)=ao+ a1z + -+ aya”, or

HT)=ao+arT + - +a,T",
where T" =T oTo---0T.
N ——

n times
This polynomial is in fact the characteristic polynomial of 7.

1.3.6. Definition (Characteristic polynomial). — Let V be an F-vector space and
T € L(V), then the polynomial

er(z) = det(T — «I)

is called the characteristic polynomial of T.

1.3.7. Question. — Show that 0 is an eigenvalue of T' € L(V) iff T is singular.
Solution. det(T' — (0)I) =0 <= det(T) =0. O
1.3.8. Question. — If )\ is an eigenvalue of a nonsingular operator 7', then show that A~!

is an eigenvalue of T~1.
Solution. There exists v # 0 s.t.
T(v) =\
= (IT7'T)(v) =T ()
=\T"}(v)
— v=\T"'(v)

= Al = Tﬁl(v).

14



1.3. DIAGONALISATION OF A LINEAR OPERATOR

Minimal polynomial. —

1.3.9. Theorem (Existence and uniqueness). — Let V' be a finite-dimensional F-vector
space with dAim(V) = n and T € L(V). Then there exists a unique monic polynomial
mr(x) € Flz] of smallest degree s.t. mp(T) = 0. Furthermore, deg(mr(z)) < n.

Proof. Consider I[z] = {f(x) € Flz] : f(T) = 0}. Then I[z] is an ideal of F[z]. We know
that, as F is a field, F[z] must be PID. Thus, I[z] = (m1(x)), i.e.,
f(@) =mi(z)q(z), q(z) € Fla].

Let, mi(z) = ap + a17 + azz® + - - - + apz* € Fz] be the least degree polynomial in I[z]
s.t. my(T) = 0. Set mz(x) = a;, 'mi (z). Then mr(z) is a monic polynomial s.t.

mr(T) = a;,'my(T) = 0.
Thus, I[x] = (mr(z)). Let m/-(z) be another polynomial s.t. m/-(T) = 0. Then
me(z) | mip(2),
so m/n(x) = emp(x) for some ¢ € F. If m/(x) is monic, then ¢ =1 so m/.(z) = mp(z). O

1.3.10. Definition (Minimal polynomial). — Let V be a finite-dimensional F-vector space
with T € L£(V). Then the minimal polynomial of T is the unique monic polynomial
mr(z) € F[z] of smallest degree s.t. mp(T) = 0.

1.3.11. Theorem. — Let mr(x) be the minimal polynomial of T € L(V). Then for any
polynomial f(x) € F[z] : f(T) =0,
mr(z) | f(z).

In particular, mp(zx) | cp(x).
So, deg(mr(2)) < deg(cr(x).

Proof. By division algorithm, 3¢(x), r(z) € Flx] s.t.

f(x) = q(@)mr(z) + r(2).
Thus, 0 = f(T) = ¢(T)m7p(T) +r(T) = 0+ r(T). Then, we must have r(z) =0 for all = as

deg(my(z)) < deg(r(x)). Thus f(z) = q(x)my(x) which means mr(z) | f(x).
By Cayley-Hamilton theorem, c¢7(T') = 0. So my(z) | er(x) as well. O

1.3.12. Theorem. — Let V be a finite-dimensional F-vector space with T € L(V'), mp(x)
minimal polynomial of T.

A scalar X is an eigenvalue of T iff mr(X) = 0. Hence, the characteristicpolynomial and
minimal polynomial have the same zeros.

Proof. mp(z) | er(z) = cr(z) = q(@)mr(z) = cr(A) = g(N)mr(A). If X is a zero of
mr(z) then er(X) = ¢(A\)(0) =0 so A is a zero of er(x), i.e., an eigenvalue of T.

Conversely, let A be an eigenvalue of T. Then cr(\) = 0. Let « # 0 be an eigenvector
corresponding to A,

0=0(x) =mr(T)(z) =mr(N)xz = mr(A) =0.

So mr(z) and er(x) have the same zeros. O

15



1.3. DIAGONALISATION OF A LINEAR OPERATOR

1.3.13. Theorem. — Let V be a finite-dimensional F-vector space with T € L(V'), mr(x)
minimal polynomial of T, cr(x) characteristic polynomial of T. Suppose that cr(x) factors as

er(x) = (& — A1)™ (2 — X)) - (. — Ag)"™* (1.3.1)

where A1, A, ..., \p are distinct eigenvalues of T. Then there exist integers my, ma, ..., My
st.1<m; <nj forj=1,2,....k and

mr(z) = (x — A1) (@ — A2)™2 - (x — Ap)™*. (1.3.2)

Equivalent conditions for invertibility. — 7T is invertible <= 0 is not an eigenvalue
of T <= 0is not a root of my(z) <= the constant term of my(x) is nonzero.

Relationship between characteristic and minimal polynomial. — Let V be a
finite-dimensional F-vector space with T' € L(V'), then my(x), cp(x) always exist and

mr(x) | er(x).
In particular,
er(z) =mr(z) < {v,T(®),T*(v),...,T" ' (v)} is a basis of V.
Let cr(x) = ag + a1z + azx® + - + 2" = mrp(x).

1.3.14. Definition (Companion matrix). — The companion matrix of the monic
polynomial
p(z) =ag + a1z + asx® + -+ ap_qz" "+ 2"

is defined as

0 0 0 —ap
1 0 0 —aq
cp)y=|01 - 0 - —ax | (1.3.3)
0 0 -+ 1 - —a,
1.3.15. Definition (Non-derogatory matrix). — A € F"*" is non-derogatory if c4(x) =

ma(z).
1.3.16. Question. — Find the minimal polynomial of the operator T' € L(R?) s.t.
T(x,y) = (x,0).

Solution. As T(1,0) = (1,0), T(0,1) = (0,0), the matrix wrt standard basis is

A:m(T):<(1) 8)

Then ca(z) = z(z — 1) = mp(x), i.e. mp(z) =x(z —1).
This is because A(A — I) = 0 so my(z) has to divide z(x — 1) but A#0and A— T #0
so mr(x) = x(z —1). O
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1.3. DIAGONALISATION OF A LINEAR OPERATOR

1.3.17. Question. — Find the minimal polynomial of the operator T' € L(R?) s.t.

1
T(z,y) = (:E +dy, 5w - y) -

Solution. We get cr(r) = 2% — 3 from

w-(} )

So T? — 31 = 0 needs to be satisfied by the minimal polynomial. But 7' # 4++/31, so
mr(x) = 2% — 3. O

Two matrices may have the same characteristic polynomial but different minimal polyno-
mials.

1.3.18. Question. — Find the characteristic and minimal polynomial of
4 -2 2 3 -2 2
A=16 -3 4| andB=[4 -4 6
3 -2 3 2 -3 5
Solution. ca(z) = det(A —xI) = (z — 1)*(x — 2) = det(B — zI) = cp(x).
But ma(z) = (x — 1)(z — 2) # (x — 1)%(x — 2) = mp(x). O
1.3.19. Proposition. — c4(z) = car(z), ma(xz) = myr(z).

Proof. ma(x) = ag + a1z + agx?® + -+ + ap_12" " + 2" with ma(A) = 0. But
mA(AT) = mA(A)T = OT =0

as p(AT) = p(A)T for any polynomial p(x).
So m4(x) is the minimal polynomial of A and AT, Consequently, c4(z) = car(x). O

1.3.20. Question. — Find a matrix A having minimal polynomial 23 — 822 + 5z +7.Is A
invertible 7 Justify.
0 0 -7
Solution. A = |1 0 —5|. Then A is invertible as the constant term of the minimal
0 1 8
polynomial is 7 # 0. O
1.3.21. Definition (Block diagonal matrix). — A block diagonal matrix is of the form

A 0
w=(5 5)
where A and B are square matrices.
In this case, mys(x) = lem (ma(z), mp(x)).

17



1.3. DIAGONALISATION OF A LINEAR OPERATOR

1.3.22. Question. — Find the minimal polynomial of
2 5 0 00
0 2 0 0O
M=]10 0 4 2 0
0 03 50
0 00 07
. (A O
Solution. M = <0 B> where

S W
S ot N
~N O O

2 5
-39 o

ca(z) = (x —2)2, cp(z) = (z — 2)(z — 7)%. Now,
ma(z) = (xz —2)% mp(x) = (z —2)(x - 7).
So myr(z) =lem ((z — 2)%, (z —2)(x = 7)) = (z — 2)*(z = 7). O

Eigenspace, algebraic multiplicity and geometric multiplicity. — Let V be a
finite-dimensional F-vector space and T € L£(V') with eigenvalue A € F. Then

Wy={veV :Tw) =} =ker(T — A)

is a subspace of V| called the eigenspace of A in V.
Furthermore, A is an eigenvalue of T <= ker(T — XI) # {0} <= W, # {0}.
Wy is a T-invariant subspace of V,

T(Wy) € Wi.

1.3.23. Definition (Algebraic and geometric multiplicity). — The algebraic multiplicity
of an eigenvalue \ of T is the greatest integer k s.t. (z — A\)* is a factor of the characteristic
polynomial of T.

The geometric multiplicity of A is the dimension of the eigenspace Wy, dim(W)).

In general, given T € £(V) with
er(x) = (x— A1) (x— X)) (= Ap)™,
mr(x) = (= M)* (2 — A2)% -+ (z = Ap)™*

we have dim(Wy,) < r;, i.e., geometric multiplicity < algebraic multiplicity. If dim(W;) =
rj, then A; is a regular eigenvalue of 7.

18



1.3. DIAGONALISATION OF A LINEAR OPERATOR

Similar matrices and operators. — A, B € F"*" are similar if there exists P € GL,,(F) :
A = P71BP. We can generalise this to linear operators.

1.3.24. Definition (Similar operators). — Let V be a finite-dimensional F-vector space
with two linear operators Ty, T € L(V). Then T; is similar to 75 if there exists an invertible
linear operator Ty € L(V) s.t. Ty = Ty 'ToT5.

So, Th ~ Ty = To = (T ) '\ Ty =T, ' Th Ty

1.3.25. Proposition. — T} ~ T, = 17"~ T3} VneN.

Proof.
7 = (Ty ' 1o 13)"
= (T;'IoT3) - - (T3 ' ToT3)
=T; N (Ty- T) T
=Ty ' T3 Ts.
O
1.3.26. Proposition. — T} ~ T, and Ty non-singular — T non-singular and Tfl ~
Tyt
Proof. Ty =Ty ' ToTs = Ty ' = (Ty ' ToTs) ™' = Ty ' Ty H(Ty )~ = Ty My ' Ts. O
1.3.27. Proposition. — T5 non-singular —> TiT5 ~ T5T}.
Proof. Ty Y(ToT)Ty = (Ty ' To) Ty Ty = Th Ts. O
1.3.28. Theorem. — T; ~ Tp = cp,(x) = cn,(z). In other words, similar operators
have the same eigenvalues.
Proof. Ty = Ty 'TyTs. So
det(T) — xI) = det(T; 'ToTs — 2T ' T3)
= det(T3 YTy — 2I)T3)
= det(Ty ") det(Ty — =) det(T53)
= det(T2 — II)
Thus, cr, (z) = e, (2). O

Two operators that have the same eigenvalues must have the same characteristic polyno-
mials.

1.3.29. Example. — 1. Let Ty, T» € L(R?) be defined by
Ti(z,y) = (3z + 6y, 3y), Ta(v,y) = (3z,3y).

Then cr, (7) = (z — 3)? = e, ().
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1.3. DIAGONALISATION OF A LINEAR OPERATOR

2. Let Ty, Ty € L(R?) be defined by

Tl(xay) = (I,y), TQ(:Cay) = (x+yay)
Then c7, (z) = (v — 1)? = eq, (7).

1.3.30. Definition (Diagonalisable operator). — Let V be a finite-dimensional F-vector
space. An operator T' € L(V') is diagonalisable over F if there exists an ordered basis B of
V wrt which the matrix of T, [m(T)]p, is diagonalisable.

In other words, [m(T')]p is a diagonal matrix, called the diagonal form of T.

1.3.31. Remark. — A € F"*" is diagonalisable over F if 3P € GL,(F) : P~*AP is a
diagonal matrix.

P m(T)]|gP = [m(T)]p .
Suppose that B = {vy,...,v,} is a basis of V s.t.

A 0O 0 - 0
0O X O --- O
()]s = - :
0 0O 0 -+ A,

then

T(’Ul):)\1’01+0'U2+"'+0"Un:>\11)1

T(n) =0-v14+0 vy + -+ Ayvp = Aoy

thus Tj(’l}j) = )\j'Uj-
1.3.32. Question. — Check if T € £(R?) is diagonalisable, where
T(z,y) = (4l + Ty, —20z + T4y).

Solution. [m(T)|g = _4210 774> wrt standard basis.

Let B' ={(1,4),(7,5)}. Then we get

[m(T)] 5 = (609 406) |

Taking P = (le g) we get P~ [m(T)|pP = [m(T)]p so T is diagonalisable. O
Necessary and sufficient conditions for diagonalisability. — Let V be a finite-

dimensional F-vector space with dim(V') = n.
1.3.33. Theorem. — T € L(V) is diagonalisable iff every eigenvalue A of T is regular.

1.3.34. Remark. — dim(W)) = dim(ker(T" — AI)) = n — rank(T — AI) by rank-nullity
theorem.
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1.3.35. Theorem. — T € L(V) is diagonalisable iff mr(x) is a product of distinct linear
factors, i.e.,
mrp(z) = (x — A)(x — A2) - (. — \p).

1.3.36. Theorem. — Let T € L(V) have k distinct eigenvalues Ay, ..., \,. Then the
following are equivalent:

1. T is diagonalisable.

2. V=W @ - © Wy, where Wy, = ker(T — \;I) is the eigenspace of ;.

3. The characteristic polynomial of T splits” over F and each eigenvalue is regular.
4. The minimal polynomial of T is mp(x) = (x — A1) -+ (x — Ag).

1.3.37. Theorem (Enough eigenvalues — diagonalisable). — If T has n = dim(V)
distinct eigenvalues, then T € L(V) is diagonalisable.

The above condition is sufficient but not necessary - for example on R? take the operator
T(z,y,z) = (6x,6y,7z). Then it has only two eigenvalues 6 and 7 and dim(R?) = 3 but T is
diagonalisable.

1.3.38. Example. — Let T € £L(R?) defined by
T(z,y) = (x +y,2y).

Then cp(z) = (x — 1)(z — 2) and taking B as standard ordered basis,

m(ls = (5 )

is diagonalisable.
1.3.39. Question. — Check whether the following are diagonalisable:
1. T € L(R?) s.t. T(z,y) = (x,y). Ans. Diagonalisable.
2. T € L(R3) s.t. T(x,y,2) = (y+ 2,2+ 2,2 +7y). Ans. Diagonalisable.

3. A= (1 1> . Ans. Not diagonalisable.

0 1
1 1 1
4. A=10 1| . Ans. Not diagonalisable.
0 0 1
1 2 3
5 A=10 4 5. Ans. Diagonalisable.
0 0 6
1 0 0
6. A=10 0 —1|. Ans. Diagonalisable over C, but not over R.
0 1 0

"For example, (x2 + 1) splits over R and Q(v/2) as (z2 + 1) = (z — vV2)(z + V2).

21



1.3. DIAGONALISATION OF A LINEAR OPERATOR

1.3.40. Definition (Idempotent and nilpotent operators). — T € L(V) is
1. idempotent iff T2 = T.
2. nilpotent iff 7" = 0 for some n € N.

1.3.41. Proposition. — Idempotent operators are diagonalisable but nonzero nilpotent
operators are not diagonalisable.

Proof. For idempotent operator, 72 — T = 0 so
mrp(z) =z, (x—1) or x(z — 1)

hence diagonalisable.
For nonzero nilpotent operator, 7" = 0 so mp(x) = 2™, m < n which is not a product of
distinct linear factors. Hence not diagonalisable. O

m

1.3.42. Definition (Triangularisable). — Let V be a finite-dimensional F-vector space
and T € L(V), then T is triangularisable over F if there exists an ordered basis B of V
wrt which the matrix of T" is upper or lower triangular.

1.3.43. Remark. — A € F"*" is triangularisable over F if 3P € GL,(F) : P"'AP is
upper triangular.

1.3.44. Example. — T € L(R3) s.t.
T(x,y,2) = (2x + y, 5y + 3z, 8%)
is triangularisable wrt the standard ordered basis.
1.3.45. Theorem. — The following are equivalent for T € L(V) :
1. T is triangularisable.
2. Every nonzero T-invariant subspace of V' contains an eigenvector of T.
3. er(x) splits over F.

1.3.46. Theorem. — T € L(V) is triangularisable iff mr(x) is a product of linear
polynomzials over F that are not necessarily distinct.

1.3.47. Example. — T € L(R?) s.t.
T(z,y,2) = 2z —y +4z,y,4x + z)
is triangularisable.
1.3.48. Question. — Is T € L(R*) defined by
T(z,y,z,w) = (x —y,—2y + 3z —w,4ax — 5z, + y — w)
is triangularisable ?

1.3.49. Definition (Simultaneously diagonalisable and triangularisable). — Let V be
a finite-dimensional F-vector space and T7,T> € £(V) be diagonalisable (resp. triangular-
isable). Then 77 and T» are simultaneosuly diagonalisable (resp. simultaneosuly
triangularisable) iff 71Ty = ToT1.
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1.3.50. Question. — Let T € L(R3) s.t.
T(z,y,z) = (Te —y — 2z, —x + Ty + 2z, —2x + 2y + 102).

Is T diagonalisable over R ? Ans. Diagonalisable.

1.3.51. Question. — Is T € L(R?) defined by
T(e,y,2) = (~20 —y+ 2,20+ y — 32, —2)
diagonalisable or triangularisable over R ? Ans. Triangularisable but not diagonalisable.

1.3.52. Question. — Are the following diagonalisable or triangularisable over R ?

1. T € L(R?) s.t.
T(x,y, Z) =(r+2z,2y+z —x+ 32).

Ans. Not diagonalisable but triangularisable.
2. T € L(R3) s.t.
T(l‘v Y, Z) = (_Zv T+ 2, Y =+ Z)
Ans. Not diagonalisable but triangularisable.

1.3.53. Question. — Let A € R3*3. Prove that if A £ B where B is triangular over R,
then A ~ D where D is diagonal over C. Hence conclude that

0 0
0 -1
10

A:

OO =

is not triangularisable over R but diagonalisable over C.

Solution. cr(x) = az® +vr? + cx + d € R[z], which is of odd degree so at least one real root
exists. Assume

er(z) = (z = A)g(x),
then as A is not similar to any triangular matrix on R, g(x) does not split over R so it has

no real roots. Thus B
er(@) = (& = M)(@ — N (@ = X) = ma(a)

which is diagonalisable over C.
1 0 O
A=(0 0 -1
01 0

has ca(x) = (x — 1)(2? + 1) = (z — 1)(x — i) (2 + i) which splits over C but not R as (22 + 1)
cannot split over R. Hence A is not triangularisable over R but diagonalisable over C. [

0 1 0
1.3.54. Question. — Let A= |2 -2 2| .Is A similar to a triangular matrix over R ?
2 -3 2

Justify. Ans. Triangularisable.
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1.3.55. Question. — Are A and B simultaneosuly diagonalisable over R if

3 -1 -1 3 -2 -2
A=(1 1 —-1]JandB=[1 0 -=2]7
1 -1 1 3 -3 -1
Justify. Ans. Sitmultaneously diagonalisable.
1.3.56. Question. — Is every invertible matrix diagonalisable ? Is every diagonalisable
matrix invertible ?
Solution. Counterexample to first claim is
1 1
0 1)’
Counterexample to second claim is
10
0 0)°
O
1.3.57. Question. — Are A and B simultaneosuly diagonalisable over R if
1 1 1 2
= = ‘?
a8 Yaan= (1, 2)
Justify.
1.3.58. Question. — Given an example of

1. two diagonalisable matrices A, B s.t. A + B is not diagonalisable.
2. two triangularisable matrices A, B s.t. A 4+ B is not triangularisable.
3. two diagonalisable matrices A, B s.t. AB is not diagonalisable.

4. two triangularisable matrices A, B s.t. AB is not triangularisable.

Solution. 1.
A= (g 11> and B = <_01 g)
2.
At Y= 9)
3.
A= (} (1)> and B = <(1) i)
4.
A= (0 N aman= (1 0)
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CHAPTER 2.

Inner product spaces and
orthogonality

2.1. Inner product and norm

2.1.1. Overview. — Inner products and norms are functions that let us measure distances
or equip our vector space with some distance function (metric) or topology. They are
generalisations of the Euclidean inner product (dot product) and Euclidean norm (distance),
and it only makes sense to consider vector spaces equipped with such functions over R and
C due to issues with ordering. Hence we will assume F = R or C unless otherwise stated.
It is nicer to do analysis on such a space if every Cauchy sequence in it is convergent to
some limit in that space - completeness. A complete inner product space is called a Hilbert
space whereas a complete normed space is called a Banach space. Hilbert and Banach spaces
form the core of the subject of functional analysis and the mathematics of quantum theory.

LINEAR Inner product Normed
ALGEBRA space space
completion completion
FUNCTIONAL .
ANALYSIS Hilbert space Banach space
2.1.2. Euclidean norm and inner product. — On the real line R the distance of =

from 0 is measured simply by the absolute value |z|. In the R? plane we measure distance

from origin by ||z|| = ||(z1,22)|| = /2% + 23 = V& - x, where z - y = z1y1 + 22y> is the inner
(dot) product. Generalisation to R? and the Euclidean n-space R™ is straightforward.

(xla Zg, $3)

lzl|=y/z24a3+zi=VzT

/

2.1.3. Definition (Euclidean inner product and norm). — For any two vectors x,y € R™,
the dot product or Euclidean inner product of z = (z1,...,z,) and y = (y1,...,Yn) IS
defined by x -y = z1y1 + - - + Znyn € R. The Euclidean norm of z is |z|| = /= -z € R.
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2.1.4. Remark. — The Euclidean inner product is scalar-valued, hence it’s often called a
scalar product. Also note that

wox =i+ ah = |zl

We want to generalise the Euclidean norm and inner product to any V over F =R or C.
Observe that the Euclidean inner product satisfies the following properties:

1. -z > 0Vx € R™ with equality iff =0 € R™.
2. Vy € R™ we have that  — x-y is a linear map from R” to R (in fact a linear functional).
. x-y=y-xVr,y e R".

This is only for R™ as an R-vector space. What about C" as a C-vector space 7 We use
the property of complex conjugation:

Vz e C: 2z = (R(2) +iS(2))(R(z) — iS(2)) = R(2)* + 3(2)* = |22

2.1.5. Definition. — Let z = (21, -+, 2pn),w = (wy, -+ ,w,) € C". Then the complex
inmer product and norm are, respectively,

Zow=21W1+ -+ 2Wn, |2 =VzZ-z2=V21Z1+ 0+ 20Zn.

2.1.6. Remark. — The complex inner product differs from the Euclidean in that symmetry
(Remark 2.1.4, property 3.) no longer holds; instead, we have conjugate symmetry z-w = w- z.
From this point onwards, unless otherwise stated, F = R or C.

2.1.7. Definition (Inner product). — Let V be an F-vector space. An inner product on
V is a map
(,):VxV —F

(wy) —(zy)

satisfying the following properties:

1. (x+y,2) =(x,2) + (y,2) Va,y,z€V (additivity in first component).
2. Azr,y) =A(x,y) YAeF,z,yeV (homogeneity or linearity in first component).
3. (x,y) = (y,x) Yo,y eV (conjugate symmetry).
4. (z,z) >0 Ve eV (positivity).

In particular, (z,z) =0 < z=0€V (definiteness).

We then say (-, ) is an inner product defined on V, making it into an inner product space.

2.1.8. Remark. — Inner product is needed to define angles and distances in a vector space.
F =R = real inner product space, F = C = complex inner product space. Physicists
often define linearity in the second component instead, whereas most mathematicians define
inner products with linearity in the first component.

Asa@=aVa eR, when F =R we have (x,y) = (y,x) .

If (-,-) is an inner product on V| then ¢ (-,-) is also an inner product on V for every
e>0,eeR.
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2.1. INNER PRODUCT AND NORM

If F =R then (-,-) : V x V — R is a bilinear map (linear in both components):
(z+2y) = (z,y) + (z,9)
(T, y+2)=(z,y) + (z,2).

If F = C then (z,y + z) = (x,9) + (z,2), but (z, \y) = X(z,y).

2.1.9. Example. — Let V=F"* (F=Ror C) and z,y € F" : & = (a1, - ,Zy),y =
(Y1, ,Yyn). Then

(T, y) = 2171 + - + 20T,y (2.1.1)
is the usual, standard or Fuclidean inner product on F™. For A\1,..., A\, >0, A1,..., A\, € F,
(z,y) = M1y + - + Az, (2.1.2)

is also an inner product on F".

2.1.10. Example. — Let V = CJa, b] be the R-vector space of all continuous functions
feR (—oo <a<b<oo). Then an inner product on V is given by

b
(19) = [ Sy, (213
In particular, if V= C[—1,1] then
1
(9) = | fwgla)da (2.1.4)
-1
and if V' = C|0, 1] then
1
(9) = | H@g(o)iz. (2.1.5)
0
If f € Cl*Y instead, then
b
(9) = | ra)gtords. (2.1.6)
2.1.11. Example. — Let V =TF"*" (the space of square matrices of order n over F). Let
A = (aij)nxn € F**". Then the adjoint of A is defined as the conjugate transpose of A,
* T —T AT
A = (aij)an =A =AT = (aji)an. (217)
If
A 1+2i 2434
T \3+4i 4+5i)°
then
— 1-21 2—-3:
A <3 —4i 4-— 5@')
so that
. (1-2 3-—4i
AT= (231' 451')'
We can define an inner product on F"*" by
(A, B) = tr(B*A). (2.1.8)
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2.1. INNER PRODUCT AND NORM
2.1.12. Example. — Let V = P(R). Then

(.9, = F(0)9(0) + / @) (@) (2.1.9)

and ~
()= [ f@g(o)e s (2.1.10)
0
are two possible inner products on P(R).
2.1.13. Question. — Does there exist a non-Euclidean inner product on R? ?
2.1.14. Example. — For any z,y € R?, we define
21\ (a ¢
(z,y) = az1y1 + c(T1Y2 + T2y1) + ba2y2 = ( 1) ( b) <y1> =a" Ay (2.1.11)
T2 c Y2

where a, b, c € R are arbitrary. Then (z,y) = 27 Ay is an inner product on R? iff > 0 and
ab—c® >0, i.e. det(A) > 0. For example, (x,y) = z1y1 + 2(x1y2 + T2y1) + 5rays.

2.1.15. Theorem (Basic properties of inner product). — Let V' be an F-inner product
space. Then the following hold:

1. For ally € V (fized), there is a linear functional V. — F defined by x — (x,y) .
2. (x,0)=(0,z) =0 VzeV.
3. (x,y+2)=(x,y) +{(x,2) Va,y,z€V.
4. {z,  y) = Xz, y) VAEF,m,ycV.
Proof. 1. Let A € F,a,b € V. Then
Aa+b— (Aa+b,y) = (Aa,y) + (b,y) = Aa,y) + (b, y) .

2. Observe that

3. (ry+2)=(y+2z) =(y,2) +(z,2) = (y,2) + (2,2) = (z,9) + (z,2) .
4. (x,\y) = (g, ) = My, ) = Az, y) .

O
2.1.16. Definition (Norm). — Let V be an F-inner product space. For any « € V the
norm of x is defined by
1
[zl = vz, z) = ((z,2))> . (21.12)

In other words, ||z||? = (x,z).

2.1.17. Example. — Let V =F". Then

Ve e T : |z)| = ]z 24 -+ |za ]2
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2.1. INNER PRODUCT AND NORM

2.1.18. Example. — Let V = C[-1,1]. Then

v e CL L Ifl = VIET) =) [ r(e)da.

2.1.19. Theorem (Basic properties of norm). — Let V' be an F-inner product space, then
for any x € V, A € F we have the following:

1 ||z =0 < xz=0.
2. el = (Al
Proof. 1. |z]| =0 <= /{(z,2) =0 < 2 =0.

2. |xel| = Qe Az} = Var/(z,z) = VIRV (e ) = [\

O
2.1.20. Theorem. — Let V be an F-inner product space. Then for any x,y € V we have
the following inequalities:
1. |z, y) | < |lz]lllvll- (Cauchy-Schwarz inequality)
FEquality holds <= x and y are linearly dependent, i.e. x = Ay for some X\ € F.
2. |lz+yl < |zl + vl (Triangle inequality)
8l +yll? + llz =yl = 2ll=]* + 2/lyl>. (Parallelogram law)

Proof. 1. If y = 0 then this is trivial. So let y # 0. Then (y,y) # 0. Now for any A € T,

< Jlz = yl)?

={x— Ay, — \y)

= (z,2 = Ay) — Ay, — \y)

= (z,2) = Ma,y) = My, ) + A (y,y) -

Setting A\ = M,

we get
(v, )

z,y
0 < ol — ST (2.113)

Equality holds in (2.1.13) iff 2 = Ay for some A € F.

2+ ylI* = (= +y,x +y)
= (z,z) + (z,y) + (y,2) + (y,9)
= [lz)1* + (2, 9) + (2, 9) + lylI”
= [lz]1* + 2R ((z,9)) + llylI®
= |zl + 2 (z,y) + [lylI?
<zl + 2l lllyll + wl* = (2]l + lyl)>.
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2.2. ORTHOGONALITY AND ORTHONORMALITY

le+yl>+llz—yl?={@+y,2+y)+(z—y,z—y)
=2(x,z) +2(y,y)

= 2lz|* + 2lly||*.
O
2.1.21. Example. — If V = R? then (z,y) = ||z||||y|| cos(#) and
@,9) | = ]yl cos(0)
< [l iyl
2.1.22. Theorem. — Fuvery inner product space is a metric space.
Proof. Let V' be an inner product space over F. Then d : V x V' — R defined by
d(z,y) =llz -yl Ve,yeV
defines a metric space (V,d). O
2.1.23. Remark. — Every finite dimensional inner product space is a complete metric

space, hence a complete inner product space. Such a complete inner product space is called
a Hilbert space.

2.2. Orthogonality and orthonormality
2.2.1. Definition (Orthogonal). — Let V be an F-inner product space. Then two vectors

x,y € V, x # y are said to be orthogonal if (z,y) = 0.
A nonempty subset S C V is orthogonal if (x,y) =0 Va,y€ S, = #y.

2.2.2. Definition (Orthonormal). — Let V be an F-inner product space. A nonempty
subset S C V is orthonormal if S is orthogonal and ||z|| = 1Vz € S.
2.2.3. Remark. — If {z1,...,2,} is an orthonormal set of vectors in V| then
1 ifj=k o
Ti, L) = ATk, k) = || Tk |7 2.2.1
(j, ) {0 i) 4k (Th, 2r) = ||k (2.2.1)
2.2.4. Example. — Let V = F", then the standard basis {e1,...,e,} is a natural example

of an orthonormal set.

2.2.5. Example. —

{(Zwa) wa) e

is an orthonormal set of vectors in R3.



2.2. ORTHOGONALITY AND ORTHONORMALITY

2.2.6. Example. — Consider F*"*" = R"*" or C"*". Take the elementary matrices
{Eij 14,5 =1,...,n}, where

0

where the ith row, jth column is 1 and every other entry is 0. With (A, B) = tr(B*A), we
get that {E;; : ¢,j =1,...,n} is an orthonormal set over F"*".

2.2.7. Example. — Let V =R?. Let z = (71,22), ¥ = (y1,92) € R%. Then
(z,y) =0 <= 2151 + 2292 = 0.

If we take a straight line from origin through = then this straight line is perpendicular to
the straight line passing through y.

2.2.8. Theorem. — In an F-inner product space V, orthogonal subsets’ of nonzero elements
of V' are linearly independent.

Proof. Let S C V be an orthogonal subset of nonzero vectors in V. Let x1,...,z, € S such
that

My + -+ Ay, =0 (22.2)
for some Ay,..., A\, € F. Then for 1 < i < n,

Aillzill® = Xi (@i, w4)
=X (@1, @) + -+ N (@i, @) + -+ A (@, @)
=Mz + -+ A, 24)

= (0,z;) =0.
As ||z;|| = 1, we have A\; = 0 for 1 < ¢ < n. Hence S is linearly independent. O
2.2.9. Theorem (Bessel’s inequality). — Let V' be an F-inner product space. Let
{e1,...,en} be an orthonormal subset of V. Then for all x € V, we have
[, en) [P+ 4 [z, en) [F < [l (2.2.3)

Proof. Let y =x — ((x,e1)e1 + -+ (x,en) €p) . Then
Iyl1* = (v, y) = l2ll* = (| {z, ea) [P+ + [ {z,ea) [P) 2 0. (2.2.4)
Hence, | (z,e1) P+ + | (z,en) P < 2] o

2.2.10. Definition (Orthonormal basis). — Let V be an F-inner product space. A subset
B of V is called an orthonormal basis of V' if B is a basis for V' and an orthonormal set.

LIf V is infinite dimensional then we consider all possible finite subsets of S, in that case all finite subsets of
S are linearly independent.
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2.2. ORTHOGONALITY AND ORTHONORMALITY

2.2.11. Example. — The standard basis {e1,...,e,} of F* over F is an orthonormal
basis.
2.2.12. Example. — The standard basis {E;; : 4,5 = 1,...,n} of F"*" over F is an
orthonormal basis.

1111y (11 1 1 11 11 11 1 1\ ;
2.2.13. Example. — {(3,3,3:3):(3:2:72:72) (3 =3 —33) (2,3, —5:3) } is an

orthonormal basis of F* over F.

2.2.14. Remark. — V «— B For a general basis B = {x1,...,x,}, verifying linear
space basis

independence is not easy. Showing Ay = 0 for all Ay just from >, _; Axzy = 0 is nontrivial
in general.

For an orthonormal basis, the implication 22:1 M =v = (v, ) = A is immediate.
So Y r i Akzr =0 = A; = (0,25) = 0. This is the advantage of orthonormal bases over
usual bases.

2.2.15. Theorem. — Let {e1,...,e,} be an orthonormal basis of an F-inner product space
V. Ifx,y €V then

1.z =(x,e1)e1+ -+ (Tn,en) en.

2. ||z]|? = [(z, €1>|2 + -+ [(z, 6n>|2. (Bessel’s identity)

3. (x,y) = (w,e1) (e1,y) + -+ (,en) {€n,y) (Parseval’s identity)
= (z,e1) {y,e1) + - + (@, €n) (Y, €n)-

Proof. L.LetzeV:iz=X er+ -+ A\en = (z,¢;) = \i.

So, x = (z,e1)e1 + -+ + (Tn, €n) €n.

2. For any z € V,

||{17||2 = <$’,CE> = <1‘, <.’L',61> €1 +-+ <l’n,€n> en>
= <(£, <£L',61> 61> +oeeet <£L’, <$aen> €n>
= <.’E,61> <£L',€1> +oeee <£L’,€n> <.’£,€n>
= @, e)]* + - + [(w, en) |
3. Let z,y € V. Then
<$,y> 33, Z/,€1>€1 + o + <y7€7l> €n>

)+t (@ (Y en) €n)
= (y,e1) (@, e1) + -+ (y,en) (2, €n)
= (z,e1) (y,e1) + -+ (@, en) (y, €n)
= (z,er) (er,y) + -+ (z,en) (en, y)
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2.2. ORTHOGONALITY AND ORTHONORMALITY

2.2.16. Theorem. — FEuvery finite dimensional inner product space has an orthonormal
basis.
Proof. Construction by Gram-Schmidt orthonormalisation (Theorem 2.2.17). O
2.2.17. Theorem (Gram-Schmidt orthonormalisation process). — Let V' be an F-inner
product space and {v1,...,vm} be a linearly independent set of vectors in V. Let f; = vq. For
2 < k < m, define f, inductively by

(Vk, f1) (vk, fr—1)

fr=vp — h— = fe-1 (2.2.5)

1f112 [ fe-1ll?

For1<k<m,lete,= Hf i Then {e1,...,em} is an orthonormal set of vectors in V s.t.
span(vy,...,vr) = span(ey,...,ex) for 1 <k < m.

2.2.18. Example. — Consider the basis B = {(0,1,1),(1,0,1),(1,1,0)} of R3.
Let fi = (0,1,1) = ||fi]| = V2. Now,

((1,0, 1) (0,1,1))

o)
(, 33) = Ial=y3

f2=(1,0,1) —

(0,1,1)

(1,0,1)

2
_11
fg—(].,].,O) <(171a0) (071a1)>(0,171)7 <(1’17O)’(§ 272)> <1’ 1 1)
2

272
_ o) - (012 1 11
- )y 7272 3) 676

Then we have

After simplifications, e; = 0,1,1),e0 = % (2,-1,1),e3 =+ (1,1,-1).

7 (
V2 V3
1 1 1
— ,— (2,-1,1), —=(1,1,—1) ; is an orthonormal basis of R3.
{010 Fe1n Fon-n)
2.2.19. Example. — Use Gram-Schmidt orthonormalisation process to construct an
orthonormal basis from the following bases of R3 :

Hence, (0,1,1)

LA L1, (0.1,1),(0,0, D)} Ans. {J(1,1,1), &5 (=2,1,1), 55 (0,-1,1)}.
2. {(2,1,2),(4,1,0), (3,1, 1)} Ans. {%(2,1,2),%(1,0,—1),3—12(—1,4,1)}.
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2.2. ORTHOGONALITY AND ORTHONORMALITY

2.2.20. Example. — Take the polynomial inner product space

V =Pa(R) ={f € Rz] : deg f < 2}.

1
g = / f@)ga)ds

For all f, g € P2(R),

Then {1, x, 2%} is a basis of V. Taking f; = 1, we then have || f1|| = fil dr = /2, so

1 1

fo=u -z f12>f1 / zdr = ,
||f | 1

= [ wrae= \f
fs=2a"— f - >f2
||f1||2 ||f 12
1t 3 !
:x2—§/_1x2dx—§x/_la:3dm
2_ 1

/3]l

1
2 1 8
5——x24 — |do=4/—.
\//_1 (x 3" +9> "V
Hence, {%, \/gm, ,/%5 (x2 — %)} is an orthonormal basis of V.

2.2.21. Example. — Let V = P(R). This is an infinite dimensional vector space. A basis
for V is given by {1,x,22, ... 2", ...}, and we want to find an orthononormal basis of the
form

{OzoPo(.T), OéQPQ(x), ey Oznpn(.%‘), N },

m\»a

where P,(1) =1 and a,, = | Py (2)||7 = (f_ zdx) for all n. Let Py (z) = {Cﬂg)

—

Then fo =1 = [|fo]> =2, Py=1,

1 [t )
h=e—5 | wdv=c = |fAl=35 hP=ug

1 3’
fgzxz—;/_llxzdx—gx/_llx:%dw
= o g = Rl = 4
Py(z) = J;zg; = g (ﬁ - ;) = %(3:& ~1).
We get a,, = [|[Pu(2)||7t = ( _11 dx) : = (\/%)71, and the polynomials

Py(z) =1, Pi(z) =z, Py(z) = 1(32? — 1), ... are exactly the Legendre polynomials.
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2.2.22. Theorem (Extension theorem). — Let V' be an F-inner product space of dimension
n. If {x1,...,2} is an orthonormal subset of V' then there exist Tyy1,...,2, € V s.t.
{z1,...,x,} is an orthonormal basis of V.

2.3. Inner product space isomorphisms

2.3.1. Definition. — Let V and W be two F-inner product spaces. Then a mapping
f:V — W is an inner product space isomorphism if it is a vector space isomorphism
that preserves inner products, i.e.

(f(2), f(y)) = (z,y) Vw,yeV.

2.3.2. Theorem. — Let V and W be two F-inner product spaces. Let {e1,...,e,} be
an orthonormal basis of V. Then f : V — W is an inner product space isomorphism iff
{f(e1),..., f(en)} is an orthonormal basis of W.

2.3.3. Theorem. — Let V be a finite dimensional F-inner product space and T : V — V be
a linear operator. Then T has an upper triangular matriz with respect to some orthonormal
basis of V iff the minimal polynomial of T is of the form

mr(x)=(x—XA1) (& —An), M,...,A\m €F.

2.3.4. Theorem (Schur’s theorem). — FEvery linear operator on a finite-dimensional
complex inner product space has an upper-triangular matriz with respect to some orthonormal
basis.

2.3.5. Theorem (Riesz representation theorem). — Let V' be a finite-dimensional F-inner
product space and ¢ : V — F be a linear functional. Then there exists a unique vector v € V
s.t.

d(u) = (u,v) YueV.

2.3.6. Example. — Let V = C[-1, 1], which is an infinite dimensional real inner product

space. Then
/ fla

We define ¢ : C[—1,1] — R by ¢(f) = f(0). Then there is no g € C[-1,1] : ¢(f) = (f,g) -
Hence, the Riesz representation theorem (Theorem 2.3.5) may fail on an 1nﬁnite—dimensional
inner product space.

2.4. Orthogonal complement

Non-uniqueness of complementary subspaces. — In an F-vector space V, every
subspace has a complement. A complement always exists, but is not necessarily unique.
Consider the real plane V = R2. Any line W passing through the origin in R? forms a
subspace. Any line V passing through the origin and not parallel to W then is a complement
of W.

However, we can define a specific kind of complementary subspace in an inner product
space (or, more generally, in any space equipped with a bilinear form) that both exists and
is unique.

35



2.4. ORTHOGONAL COMPLEMENT

2.4.1. Definition (Orthogonal complement). — The orthogonal complement W+ of a
subset W of an F-inner product space V is defined by

Wt={veV:(uuv) =0 YuecW}. (2.4.1)

2.4.2. Example. — In V = R? we have the following three subspaces:
X ={(2,0):2€R}, Y ={(0,y) : y € R} and D = {(z,z) : € R}. Then

RP=XaY=X¢eD=Y&D

so all three are complementary subspaces. But the orthogonal complement of any one
subspace is unique: for example, R? = X @ X+, X1 =Y.

2.4.3. Example. — In V = R3 consider the subset W = {(2,3,5)}. Then its orthogonal
complement is the following plane passing through origin,

W = {(z,y,2) € R®: 2z + 3y + 52 = 0}.
The orthogonal complement of U = W+ is then U+ = {(2t,3t,5t) : t € R}.

2.4.4. Example. — In V = R consider W = {(a,b,0,0,0) : a,b € R}.
Then W+ = {(0,0,2,y,2) : z,y,z € R}

2.4.5. Example. — C[-1,1] = W @ W+, where
W= {f(z): f(=z) = f(x)}, W= {f(2): f(=z) = —f(z)}.
2.4.6. Example. — R"*" = § @ S+, where
S={AcR™":A=AT} St={AcR™":A=_AT}

2.4.7. Theorem (Properties of orthogonal complement). — Let V' be an F-inner product
space.

1. If W CV then W is a subspace of V.
2. {0}t =V, v+t={o}
8. If W CV then WN W+ C {0}

4. If dim(V') < oo and Wy, Wy are subspaces of V, then
b) (Wl—l—Wg)l:WlLﬂW;.
C) (WlﬂWQ)J‘:W1J'+W2J‘
Proof. 1. weW = (w,0)=0 = 0¢c W=. Also,

ryeWhweWAeF = (w,z+ \y)
= (w,z) + X{z,y)
=04+0=0 = xz+\yeW.

36
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2. LetveV = (0,v) =0 = v e {0}. So, V C {0}, but {0}+ CV as {0} C V.
Hence, {0} = V.

Similarly, let v € VY = (v,v) =0 = v = 0. Hence, V+ = {0}.
3. LetweWNWH = (wuw)=0 = w=0 = we {0} = WnWwc {0}

4. a) Let w € Wit = (u,w) =0 Yu € Wo. As Wi C Wy, this implies that
(u,w) =0 Yu€W; = w € Wi-. Hence Ws- C W;.
b) As Wit and Wk are subspaces of V, 0 € Wit N Wi.
Let v € (W) + W)t = (w; +wa,v) =0 Yw; € Wi, we € Wa.

Then, setting w; = 0 we get (wz,v) =0 = v € Wi" and setting wy = 0 we get
<’w1,’U>ZO = veW; L. So (I/Vl-i-I/VQ)L nglﬂWQL

Let v € Wit n W5t = (w1,v) = (wa,v) =0 Vw; € Wi, wy € Wa. Thus,
(w1 + wa,v) = (wy,v) + (wa,v) =04+ 0=0 VYw; € Wi, ws € Wa.
Hence, v € (W1 + Wa)L. So (W; + Wa)+ = Wit n Wit
¢) In a finite dimensional space (W=)+ = W. (cf. Theorem 2.4.10) So,
(W1 N Wa)*
= ((WiHtn(wz)h)
= (Wi +wiH)h)
= Wi + W5

1

O

2.4.8. Theorem. — Let V be an F-inner product space and W be a finite dimensional
subspace of V. Then V. =W @ W+.

Proof. Let v € V. As W is a finite dimensional subspace of V| there exists an orthonormal
basis, say, {e1,...,em} of W. Also, (v — (v,e1)er — -+ — (U, €m) em, k) = (v, ex)—{(v,ex) =0
fork=1,...,m.

Then

v={(v,e1)er+- -+ (v,em)em €W
+v—(v,e1)er — - — (v,em) em € WE.
Thus V = W + W+. From Theorem 2.4.7 (3.), we know that W N W+ C {0}. But as W

and W+ are subspaces of V, {0} C W N W+,
Hence, V=W + WL, WAWL={0} = V=waw- 0

2.4.9. Example. — Let W = {f € C[-1,1]: f(0) =0}. Then C[-1,1] # W @ W+ as W
is infinite-dimensional.
Indeed, here W+ = {0}.
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2.4.10. Theorem. — Let V be an F-inner product space. Let V be finite dimensional and
W be a subspace of V. Then

dim(W+) = dim(V) — dim(W), (WH)* =w.
Proof. As V =W @ W+, we have
dimV = dim W + dim W+ = dim W+ = dim V — dim W.
Further, dim (W+)* = dim V — dim W+ = dim W. O

Alternative proof. Let x € W, then (z,y) =0 Vye Wt = z e (WH)L. SoW C (W)L
Let v € (W)t thenv=u+w, u€ W,we W=+ Wehave v —u=w e W+.
Now,ue WC (WHtandve (WHtsov—-—ue (WhHt Sov—ueWtn (W)t

Then by Theorem 2.4.7 (3.), we have v —u =0 = v=u€ W. So (W)+ CW.

Hence, W = (W)L, O

2.4.11. Corollary. — If W is a finite dimensional subspace of V, then
Wt={0} = W=V
Proof. W = (WH)t ={0}t =VW. O

Projection operator. — Let V' be an F-vector space that is the direct sum of two
subspaces W7 and W,
V=W, oW,

Then every vector v € V' can be uniquely written as a sum v = w +ws, where wy € Wy, wq €
Ws. We think of wy as the projection of v on W7 along Ws.

2.4.12. Definition (Projection operator). — The projection operator on W; along Wy
is the linear operator P on V defined by

Pv)=w Yv=w+wy €V =W, &Wo. (2.4.2)

2.4.13. Theorem. — A linear operator P : V — V is a projection iff P is an idempotent
operator on'V, i.e. P2 = P.

Proof. Let P : V — V be a projection operator on a subspace W and let v € V. Then
P?(v) = P(v) as P(v) € W and P(w) =w Yw € W.
Now let P:V — V be a linear operator such that P? = P. Let v € V, then
v= P() +(v—P)).
—~—
€im(P) €ker(P)
Thus, V = im(P) ¢ ker(P). By definition, P(V) = im(P). Also, for any w € im(P) we have

P(w) = P(P(v)) for some v € V.
But P? = P, so w = P(w) = P(v). Hence, P is a projection operator on im(P). O

2.4.14. Remark. — If V=W; @& W5 and P : V — V is the projection on Wj along W5,
then im(P) = W1 and ker(P) = Wa.
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2.4.15. Corollary. — If V is a finite dimensional F-vector space and Py, P> are two
projection operators on V, then

1m(P1):1m(P2) e P1P2:P2 & P2P1:P1.

2.4.16. Question. — Is it possible to have operators P, P, : V — V with ker(P;) =
ker(P,) and im(P;) # im(Pz) ? Justify. Is the converse true ?

2.4.17. Question. — Is it possible to have projection operators Py, P s.t. P1 P, =0 but
PP #07

2.4.18. Question. — Let U be the subspace of R? defined by U = {(z,,0) : € R}.
Find a subspace W of R3 s.t. R? = U @ W. Is W unique ? Justify.

Find a projection P, : R — R? s.t. im(P;) = {0} and ker(P;) = W. Find also a
projection P : R?® — R3 s.t. im(P,) = W and ker(P) = W.

2.4.19. Question. — Let V be an F-vector space and P : V — V a projection operator.
If f(z) € F[z] then show that f(P) = al 4+ bP for some a,b € F. What are a,b in terms of
coefficients of f(x) ?

2.4.20. Question. — Let V = W; & Ws,. Show that a linear operator P : V — V is a
projection operator iff I — P is a projection operator.

Further, show that if P is the projection on Wy along W5 then I — P is the projection on
Wy along Wj.

2.4.21. Question. — If T is a linear operator on V s.t. T?(I —T) = T(I — T)? then show
that T is a projection operator on V.

2.4.22. Question. — Let Py, P, be two projection operators on V and PP, = P, Py.
Then show that P; + P, — P; P is a projection on V.
If char(F) # 2 then show that P, + P, is a projection operator on V' iff Py Py = P,P; = 0.

Orthogonal projection. — We know V = W @ W for any finite dimensional subspace
W of V. For example,
R’=X@Y =D& D+,
X ={(z,0): xR}, X+ =Y ={(0,y):ycR]},
D={(z,2):x€R}, D' ={(—z,z):2 R}

)
D

Pp(v)
PDL (’U)

DJ_
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2.4. ORTHOGONAL COMPLEMENT

2.4.23. Definition (Orthogonal projection). — Let W be a finite dimensional subspace of
V. The orthogonal projection of V onto W is the linear operator Py : V — V s.t.

Py(v)=u, Yo=utweV=WaoW

2.4.24. Theorem (Properties of orthogonal projection). — Suppose W is a finite dimen-
stonal subspace of V. Then

1. Py € L(V) (linear operator on V).

2. Py(u)=u YueW
3. Py(w)=0 YweWH.
4. im(Py) =W, ker(Py)=W-=.
5. v—Pyv)e Wt YoeV.
6. P2, = Py.
7 N Pw )| < ol VoeV.
8. If{e1,...,em} is an orthonormal basis of W and v € V then
Py (v) = (v,e1)er + -+ (v,em) em
Minimisation problem. — The following problem often arises, the remarkable simplicity

of the solution to which has led to many important applications of inner product spaces
outside of pure maths:

Given a subspace W of V and a point v € V, find a point u € U such that |jv — u| is
as small as possible. The next result shows that u = Py (v) is the unique solution of this
minimization problem.

2.4.25. Theorem. — Let V be an F-inner product space. Let W be a finite dimensional
subspace of V and v € V. Then
lv—Pw@)| <|lv—-—w| VweW (2.4.3)

with equality iff Py (v) = w.
Proof.

[ = Pw (v)]|?

< o= Pw (@)|” + [[Pw (v) — w]?

= |lv — Pw(v) + Pw(v) —w|* (Pythagoras theorem)

= [lv —w]*.
Equality holds iff | Pw (v) —w| =0 <= w = Pw(v). O
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2.5. Self-adjoint linear operators

2.5.1. Definition (Adjoint). — Let V and W be two finite dimensional F-inner product
spaces. Let T : V — W be a linear transformation. The adjoint of T' is the function
T W — V s.t.

(T(w),w) = (v, T"(w)) YveV,weW. (2.5.1)

2.5.2. Remark. — To see why this makes sense, suppose T € L(V, W) and fix w € W.
Consider the linear functional
v (T(v),w)

on V, then this linear functional depends on 7" and w. By Riesz representation theorem
(Theorem 2.3.5) there exists a unique vector in V' s.t. this linear functional is given by taking
the inner product with it. We call this unique vector 7™ (w), in other words T*(w) is the
unique vector in V' s.t.

(T(v),w) = (v, T"(w)) YveV.

In the equation above, the inner product on the left takes place in W and the inner
product on the right takes place in V, but we use the same notation for both inner products.

2.5.3. Proposition (Adjoint of a linear map is a linear map). —
Te (VW) = T e LW, V).
Proof.

(T(v), w1 +w2) = (T(v),wr) + (T'(v), w2)
= (v, T"(w1)) + (v, T"(w2))
= (v, T"(wy1) + T (w2)) .

So T™*(wy + wz) = T*(wy) + T*(wz). Further,

So T*(Aw) = AT*(w). O
2.5.4. Example. — Let T : R? — R? be a linear map defined by

T(x1,29,23) = (z2 + 3x3,221) V(x1,72,23) € R,
Let (y1,y2) € R2, then

(T(z1, 22, 23), (y1,¥2)) = ((x2 + 323, 221), (y1,92))
= xay1 + 3x3y1 + 221Y2

= <(x1,x2,x3), (2y27 y173y1)> .
So we have T* : R? — R? defined by

T*(y1,y2) = (22,91, 3y1)  V(y1,y2) € R%
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2.5. SELF-ADJOINT LINEAR OPERATORS

2.5.5. Theorem (Properties of adjoint of a linear map). — Let T € L(V,W), then
1. (S+T)y=8"+T* VSeLV,W).
2. (\I)* =AT* VAeP.
3. (T7)" =
4. (ST)* =T*S8* VS € L(W,U), where U is a finite dimensional F-inner product space.
5. I* =1, where I is the identity operator on V.

6. T invertible = T* invertible and (T*)~! = (T—1)*.
Proof. Let veV and w e W.
1. If S € L(V,W), then
(S +T)(v),w) = (S(v),w) + (T'(v), w)
= (v, 5 (w)) + (v, T * (w))
= (v, (8" +T7)(w)) -
2. If A € F, then
(AT)(v),w) = M(T(v),w) = A (v, T*(w)) = (v, A\T"(w)) -

3. We have

(T (w),v) = {0, T*(w)) = (T'(v),w) = (w,T(v))
o (T7)*(v) = T(v).
4. Let S € L(W,U) and u € U. Then
((SoT)(v),u) = (S(T(v)),u) = (T(v), 5 * (u)) = (v, T*(5%(u))).
5. Suppose u € V then (Iu,v) = (u,v), so I[* = 1.
6. Suppose T is invertible. Then T~ 'T = I. Taking adjoints on both sides,
(17'1)" =17
=T (T ) =1

Similarly, we get (T~1)*T* = I from TT~! = I. Thus, (T*)~! = (T*)~!

O

2.5.6. Remark. — Similarly we have adjoints for square matrices A, B € F™*".

1. (A+ B)* = A* + B*.

2. (AA)* = A"

3. (A")*=4

4. (AB)* = B*A*

5. I =

6. (A")"1=(A"H* VA e GL,(F)
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2.5.7. Theorem. — Let T € L(V,W), then

1. ker(T*) = (im(T))™* .

2. im(T*) = (ker(T))" .

3. ker(T) = (im(T*))" .
)

4. im(T) = (ker(T*
Proof. Let w € W. Then we begin by proving (1.)
w e ker(T*) < T*(w) =0
— (u,T"(w))=0 YveV
— (T(v),w)=0 YveV
— we (im(T))".
Thus, ker(T*) = (im(T))" . Taking the orthogonal complement on both sides yields (4.),

using Theorem 2.4.10. As (T*)* =T, we get (3.) from (1.) by replacing T' with T*. Finally,
we get (2.) from (4.) by replacing T with T*. O

2.5.8. Theorem. — IfT € L(V,W) then the following are equivalent
1. T is an inner product space isomorphism.
2. T is a vector space isomorphism and T~ = T*.
8. TT* =idy .
4. T*T =idy .
Proof. Let T be an inner product space isomorphism, then
(T(2),y) = (T(x), T(T"}(y)))
= (.77 (y)) = (=, T"(y))-

So (1.) = (2.), and (2.) trivially implies (3.) and (4.).
Now, (4.) = (1.) as T*T =idy = T is injective = T is bijective.
Also, (2.) = (1) as (T(x), T(y)) = (z, T*(T(y))) = (=,y) - O

2.5.9. Definition (conjugate transpose). — Let A € F™*". Then the conjugate trans-
pose of A is the n x m matrix A* € F"*™ obtained by taking the complex conjugate of each
entry in the transpose of A,

(@")i; = (@);i-

When F =R, A* = AT. When F = C, A* = (A)T.

, 2 6
2.5.10. Example. — Let A = R 7. .Then A*=13—-4i 5
6 5 81 7 Y
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2.5.11. Example. —

1 4
1 2 3 .
a=( 7). a=(2s

2.5.12. Theorem. — Let V and W be two finite dimensional F-inner product spaces.
Suppose T € LIV,W), {e1,...,en} is an ordered orthonormal basis of V and {f1,..., fm} is
an ordered orthonormal basis of W. If m(T) is the matriz representation of T w.r.t. these
bases, then the adjoint map Tx € LW, V) is represented by (m(T))* w.r.t. the same bases.
In other words,

m(T*) = (m(T))".

2.5.13. Definition (Self-adjoint). — Let V' be a finite dimensional F-inner product space
and T' € L(V') be a linear operator. Then T is self-adjoint if T' = T,

In other words, T is self-adjoint if
(T(v),w) = (v,T(w)) Yv,weW.
In matrix representation, m(T) = (m(T))*.
2.5.14. Example. — Let A € F and T : F? — F? be a linear operator defined by
T(z,y) = 2z + \y, 3z + Ty) V(z,y) € F2.
Then T is self-adjoint iff

m(r) = (3 3) =y

m(T)" = (i 3) 7

In particular, a matrix A € F™*" is self-adjoint iff A = A*.
We know that the eigenvalues of a real symmetric matrix are real. This can be generalised.

But the adjoint is

so T is self-adjoint iff A = 3.

2.5.15. Theorem. — FEwvery eigenvalue of a self-adjoint linear operator on a complex inner
product space is real.

Proof. Let V be a complex inner product space and A an eigenvalue of T. As T is self-adjoint,

N[v]|* = A (v, v)

= (Av,v)
= (T(v),v)
= (v,T(v))
=X (v,v)
= Av*.

= Allvll* = Alv|?

= A=\

Hence, ) is real. O]
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2.5.16. Theorem. — Let V be a complex inner product space and T € L(V) be a linear
operator. Then T(v) is orthogonal to v for allv €V iff T =0, i.e.

(T(v),v) =0 <= T =0.

Proof. If T =0, then (T'(v),v) = (0,v) = 0 holds trivially.
Suppose (T'(v),v) =0, and let z,y € V. Then,

(T(x +iy),x +iy) — (T(x — iy),z — iy)
4
= (T(z),y) =0 Vz,yeV.

_|_

So, in particular, setting y = T'(x), we get (I'(z),T(x)) =0 = T(z) =0 VzeV. O

2.5.17. Remark. — The above result doesn’t hold in F = R. Consider for instance
T € L(R?) defined by
T(z,y) = (—y,x) V(z,y) € R

Then (T'(z,y), (z,y)) = 0¥(z,y) € R? but T # 0.

2.5.18. Theorem. — Let V be a complex inner product space and T € L(V) be a linear
operator. Then T is self-adjoint iff (T'(v),v) € R.

Proof. Let v € V and T* be the adjoint of T. Then,

(T (v), v) = (v, T"(v))

— (0, T(v)).
T is self-adjoint, so
T-T"=0

= (T -T")(v),v) =0

— (T'(v),v) — (T*(v),v) =0

— (T(v),v) = (v, T(v)) =0

<~ (T(v),v) €R.

O
2.5.19. Remark. — Again, the above result doesn’t hold in F = R. Consider for instance
T € L(R?) defined by
T(z,y) = (20— 3y, 3z +2y) V(v,y) € R%.

Then m(T) = 2 _23) which is not real symmetric, so not self-adjoint even though
(T(x,y), (z,v)) = {((2x — 3y, 3z + 2y), (z,y)) € R.
2.5.20. Theorem. — Let V be an F-inner product space and T € L(V') be self-adjoint.

Then
(T(w),v) =0 YweV < T=0.

45



2.6. NORMAL LINEAR OPERATORS
Proof. If T = 0 then it is trivial.
Suppose (T'(v),v) = 0. Then, as T is self-adjoint,

(T(m),y) — <T(l‘+y),l‘ +y> ; <T(3j — y),.%' — y> —0.

In particular, set y = T'(z), then (T'(z),T(x)) =0 = T =0. O

2.6. Normal linear operators

Let V be a finite-dimensional F-inner product space. Let T' € £(V') be a linear operator.

2.6.1. Definition (Normal operator). — T is called a normal operator if T' commutes
with its adjoint T*, i.e. TT* = T*T.

Every self-adjoint operator is (trivially) a normal operator. The converse need not be
true.

2.6.2. Example. — 1. T € L(F?) defined by T'(z,y) = (22 — 3y, 3z + 2y).
m(T) = <3 _23> wrt standard ordered basis of F2.

2 3

Its adjoint is m(T)* = (_3 9

) # m(T), so it is not self-adjoint, but

13 0

(@) = m(ry ) = (3

) so it is normal.

2 1

2x2 . A4 _
2. Let AcC 'A_(l 9

) . Then again A is not self-adjoint as

L (21
A :<—i 2)7”1

5 2+ 2
2—2 5 '

but it is normal as

AA* = A"A = (
2.6.3. Question. — Show that each of the matrices

1 0 ¢
A_<i 1) andB—(i O)

is normal but neither A + B nor AB is normal.

2.6.4. Lemma. — Let T € L(V), then T is normal iff

1T ()l = IT@)[ vveV.
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Proof.
Tr* =TT
— ITT" - T*TII =0l =0
= (TT*-TT)(v),v) =0 YveV
— ((TT")(v ) v) = {((T"T)(v),v)
— (T"(v), T"(v)) = (T'(v), T(v))
= |T()|* = |T*(v)]*.
Hence, | T* ()| = ||T'(v)|| YveV. O
2.6.5. Theorem. — Let P € L(V) be a projection operator®, then P is a normal operator
iff P is a self-adjoint operator.
Proof. Let P be normal, then PP* = P*P. Thus, ||P*(v)|| = ||P(v)|] YveV.
So, P(v) =0 <= P*(v)=0 YveV.Lety=v— P(v).
= P(y) = P(v - P(v))
= P(v) — P*(v)
=0 P*=P
Then
0=P"(y)
= P*(v—P(v))
= P*(v) = (P"P)(v)
P*(v) = (P*)(v).
So P* = P*P. Then P = (P*)* = (P*P)* = P*(P*)* = P*P = P*. O

2.6.6. Theorem. — Let T € L(V) be normal, then
1. ker(T') = ker(T™).
2. im(T) = im(T™).
3. V =ker(T) ®im(T).
4. T — X is normal for all X € F.
5

. ForallNeF,veV, B
T(v) =X <= T"(v) = v.
Proof. For (1.) let v € ker(T),
T(v)=0
1T ()]l =0
IT*(v)[| =0
T*(v) =0
v € ker(T™).

1reee

2j.e. an idempotent operator
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For (2.), im(T) = (ker(T*))* = (ker(T))* = im(T*).
For (3.),

V =ker(T) & (ker(T))*
= ker(T) @ im(T™*)
= ker(T) @ im(T).

For (4.), we need to show (T'— AI)(T — AI)* = (T — AI)*(T — \I).
(T — XI)(T — \I)*

= (T — M)(T* = XI)
= (TT* = \T* = \T* — |\*I)
= (T* = NI)(T — )
= (T — \)*(T — \I).

Finally, (5.) is a direct consequence of (1.),

Tw)=M < (T—-X)v=0
< v eker(T - \)
< v € ker(T — \I)*
< v € ker(T* — \I)
< (T* — \)(v) =0,

and hence T (v) = Av. O

2.6.7. Theorem. — Let T € L(V) be normal. Then the eigenvectors of T corresponding
to distinct eigenvalues are orthogonal.

2.6.8. Theorem. — Let V be a finite-dimensional complex inner product space. Then T €
L(V) is normal iff there exist commuting self-adjoint operators® A, B such that T = A +iB.

2.6.9. Theorem. — Let V be a finite-dimensional F-inner product space. Then T € L(V)
is normal iff there exist commuting operators A, B s.t. A is self-adjoint, B is skew* and

T=A+B.
Proof. Let
1 1
A= §(T+T*), B = §(T—T*).
Then T'= A + B. Further,

T -TT*"=(A+B)*(A+ B)— (A+ B)(A+ B)*
=(A*"+B*)(A+B)—- (A+ B)(A* + B")
=(A-B)(A+B)—-(A+ B)(A-B)
=2(AB - BA)=0.
Hence, T is normal. O
3this means A — A+, B = B*, AB = BA

i1B* = —B
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2.7. Spectral theorem

Invertible quadratic expressions. — Suppose b,c € R : b? < 4c. Let = € R, then by

completing the square
b\* b
ch—i—bx—l—c:(m—l—Q) —|—(c—4>>0.

In particular, 22 + bx + c is an invertible real number, a convoluted way of saying that it
is nonzero. Replacing the real number z with a self-adjoint linear operator yields the next
result.

2.7.1. Theorem. — Let V be a finite-dimensional F-inner product space. Let T € L(V)
be self-adjoint. Let b,c € R : b*> < 4c. Then T? + bT + cl is an invertible linear operator.

Proof. Let v € V' \ {0}. Then
((T? +bT + cI)(v),v) = (T*(v),v) + b(T(v),v) + c (v, v)

IT@)I* + b{T(v), v) + cllv]]*
(by Cauchy-Schwarz, Theorem 2.1.20) > ||T'(v)||? — [b]||T(v)|l|[v]| + ¢|lv||?

- <||T(v)|| - |b|!”>2 + (c— lf) ]|

> 0.

As (T? +bT +cl)(v) #0 Vv # 0, ker(T? + bT + cI) = {0} which means T2 + bT + ¢l is
injective, so T2 + bT + cI is bijective as it is linear. Hence, T2 + bT + cI is invertible. [

2.7.2. Theorem. — Let T € L(V) be self-adjoint. Then the minimal polynomial mr(x)
of T is given by
mr(x) = (z—A)(@—A2) - (x— A\p) (2.7.1)

for some A\, Aa, ..., Ay €ER.

2.7.3. Theorem (Real Spectral Theorem). — Let V' be a finite-dimensional real inner
product space and T € L(V'). Then the following are equivalent:

1. T is self-adjoint.
2. T has a diagonal matriz wrt some orthonormal basis of V.
8. V has an orthonormal basis consisting of eigenvectors of T.

2.7.4. Theorem (Complex Spectral Theorem). — Let V' be a finite-dimensional complex
inner product space and T € L(V'). Then the following are equivalent:

1. T is normal.
2. T has a diagonal matriz wrt some orthonormal basis of V.

8. V has an orthonormal basis consisting of eigenvectors of T.
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2.8. Positive linear operators

2.8.1. Definition (Positive and positive-definite). — Let V' be a finite-dimensional F-inner
product space and T' € L(V).

T is positive if T is self-adjoint and (T'(v),v) >0 Yov e V.

T is positive-definite if T is self-adjoint and (T'(v),v) >0 Vv e V.

2.8.2. Example. — 1. T € L(F?) given by T'(z,y) = (22 — y, —x + y) with

Then
(T(w, 2), (w,2)) = 2lw|* = 2R(wZ) + |2|* = |w — 2> + |w|* > OV(w, 2) € F?
so 1" is a positive operator.

2. If W is a subspace of V' then the orthogonal projection Py, is a positive operator.

3. If T € L(V) is self-adjoint and b,c € R : b* < 4c, then T? + bT + cl is a positive
operator.

4. Consider T' € L(R?) defined by
T(z,y) = (zcosf +ysinh, —zsinf+ycosh).

For which values of 6 is T positive 7

In this case we want for all v € R?,
(T'(v),v) = [[v]l[| Av]|cos & =0
sofe[-m/2,7/2].

2.8.3. Definition (Square root). — An operator S is called a square root of an operator
Tif S?=T.

2.8.4. Example. — T € L(F?) given by T(z,y, z) = (z,0,0) has a square root S € L(IF?)
defined by
S(x7 y7 Z) = (y7 Z’ 0)'

This is because S2 = T.

2.8.5. Theorem (Characterisation of positive-definite operators). — Let T' € L(V'). Then
the following are equivalent:

1. T is positive-definite.
2. T is self-adjoint and all eigenvalues of T are strictly positive.

8. Wrt some orthonormal basis of V, the matriz of T is a diagonal matrix with only
(strictly) positive numbers on the (main) diagonal.

4. T has an invertible positve square root.
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5. T has an invertible self-adjoint square root.
6. T = S*S for some invertible S € L(V).
Linear maps that preserve norms are sufficiently important to deserve a name.
2.8.6. Definition (Unitary operator or isometry). — T € L(V) is unitary if ||T(v)|| = ||v]|.

2.8.7. Remark. — Although unitary operator and isometry are the same for operators on
finite-dimensional spaces, a unitary operator maps a space to itself whereas an isometry may
map into an altogether different space.

2.8.8. Example. —
cosf)  sinf
m(T) = ( sinf cos 6’.>

2.8.9. Theorem (Characterisation of unitary operators). — LetT € L(V) and {e1,...,en}
be an orthonormal basis of V. Then the following are equivalent:

1. T is unitary.

2. T*T=TT* =1.

3. T is invertible with T—! = T*.

4. (T(2), T(y)) = (w,y) Va,yeV.

5. {T(e1),...,T(en)} is an orthonormal basis of V.

6. The rows of m(T) wrt the basis {e1,...,en} form an orthonormal basis of F™ wrt the
Fuclidean inner product.

7. T* is unitary.
Analogies between complex numbers and linear operators. —

| L(V)
2=z T=T*
=Zz=1|TT*=T*T=1

2.8.10. Theorem. — Let V be a finite-dimensional F-inner product space and let T € L(V)
be unitary. If X is an eigenvalue of T, then |\ = 1.

Proof. ||T(v)|| = ||v|]| and v #0:T(v) = Av,

= [Tl = [Allv]]
= [loll = [Alllo]
= 1=|A] v#£0.

So || = 1. O
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CHAPTER 3.

Determinant and generalised
inverses

3.1. Determinant as a multilinear function

Bilinear and multilinear forms. — The inner product is an example of what we call a
bilinear form - it is linear in 2 input parameters. Similarly, we can have k-linear or multilinear
forms which are linear in k input parameters. The determinant is one such example of a
multilinear form.

3.1.1. Definition (Determinant). — Let K be a field with the standard basis {e1,...,e,}.
Then the determinant is a function det : K™ x - -+ x K" — K that is uniquely characterised
S —

n times
by the following 3 properties:
1. For A e K, z,ye K", (multilinear, or n-linear)
det(vy, ..., 01,2+ AY, Vit1,...,Un)
:det(vl, ey Vi1, X Vi1, e - ,’Un) + )\det(vl, Vit 1, Yy Vi1, e - ,’Un).
2. det(v1,...,v,) = 01if v; = v; for some 1 <7 < j < n. (antisymmetric, or alternating)
3. det(eq,...,e,) =1 (identity)
3.1.2. Remark. — The above can be summarised in one sentence: the order n determinant

is the unique alternating n-form det € A" (K™)* for which det(eq,...,e,) = 1.
Also observe that from the alternating property we have

det(vi,..., v ..., 05, ..., 0n) +det(ve, ..., 05,0, Vo, V)
:det(2v1,...,vi—|—vj,...,vj—|—vi,...,2vn)
=0

S0 dCt(’Ul,...,’U,’,...,Uj,...,”Un):—dCt(Ul,...,Uj,...,Ui,...,vn).

This is why det is antisymmetric.

3.2. Singular value decomposition

3.2.1. Definition/Proposition (Singular value decomposition). — A singular value
decomposition (SVD) of a matrix A € K™*" of rank r is a factorisation
A=ULV*

where L = diag(ly,...,l.), I, > 0and U*U = I, = V*V.

52



3.3. GENERALISED INVERSES

3.2.2. Corollary. — Let A € K™*" with r = rank(A). Then A contains at least one r X r

nonsingular matriz B such that
B C
A= (D E) . (3.2.1)

3.3. Generalised inverses

Motivation. — Given two square matrices A, B with AB = BA = I and det(A) # 0 the
inverse of A is B = A~!. A square matrix is invertible iff it is non-singular. Note here that
A and B are square matrices i.e. A, B € K"*™,

Is it possible to generalise the notion of an inverse to any A € K™*™ ? The inverse B of
a square matrix A satisfies ABA = A. So if A € K™*" then we want some B € K"*™ such
that ABA = A.

3.3.1. Definition (Generalised inverse). — Let A € K™*". If there exists a matrix
B € K"*™ such that ABA = A then B is called a generalised inverse (or g-inverse) of A.

3.3.2. Theorem. — Let A € K™*" and G be a g-inverse of A. Then AG and GA are
idempotent and
rank(AG) = rank(GA) = rank(A). (3.3.1)

Proof. AGA = A so (AG)? = (AG)(AG) = (AGA)G = AG. Hence AG is idempotent.
Similarly, (GA)? = (GA)(GA) = G(AGA) = GA. Hence GA is idempotent.

Now, ‘rank(AB) < min (rank(A), rank(B)) ‘ Thus,

rank(AG) < rank(A) = rank((AG)A) < rank(AG).

Similarly,

rank(GA) < rank(A) = rank(A(GA)) < rank(GA).
Hence rank(AG) = rank(GA) = rank(A). O
3.3.3. Remark. — Every matrix over a field has a g-inverse. In general, the g-inverse of a

matrix is not unique. In fact, there are infinitely many g-inverses of a matrix A € K™*", But
if m = n and det(A) # 0 then A has the unique g-inverse A~! which is just the inverse of A.

3.3.4. Theorem. — If G1,Gq are two g-inverses of A € K™*" then for any A € K
MGy + (1 — N)Ge

is a g-inverse of A.

Proof. We are given AG1A = A = AG5A. Now for any A € K we have

AMG1 + (1= M\)Ga) A
= MG A+ (1 - N)AG,A

=M+ (1- M)A
= A.
Hence A (AG1 + (1 — \)G2) A = A so A\G1 + (1 — M\)G4 is a g-inverse of A. O
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3.3. GENERALISED INVERSES

Finding a g-inverse of a matrix. — Given a matrix A € K™*" we want to find a
g-inverse of A.
First compute r = rank(A). We then get an r X r non-singular matrix B such that

A= (B C) by SVD of A (using (3.2.1)). Then

D FE
G- (B0 (3.3.2)
L0 o0 o
is a g-inverse of A.
1 71 4
3.3.5. Example. — 1. Let A = (1 2 0 1]. We have rank(A) = 2, so B =
05 1 3
—-2/5 7/5 0
17 o . s =15 0
<1 2) , then B™" = £ ( > So a g-inverse of A is G = 0 0 0
0 0 0
1 2 3
2. Let A= 1[4 5 6. As det(4) = 0, inverse will not exist, but rank(A) = 2, so
7 8 9
h B—12 Then B = —1(° 2 i fAis G =
we have B = |, 5 en = -35|_y4 1 ) s0aginverse o is G =
~5/3 2/3 0
4/3 -1/3 0
0 0 0
3.3.6. Question. — Does there exist a g-inverse of a singular matrix ?

1 2

3 6) . Then det(A) = 0.

The answer is yes; consider A = <

A g-inverse of this A is then given by G = <(1) 8)

3.3.7. Definition (Moore-Penrose pseudoinverse). — If AT is a g-inverse of A € K™*"
such that

1. ATAAT = AT

2. (AAT)* = AAT

3. (ATA)*=ATA
then AT is called the Moore-Penrose pseudoinverse of A.

3.3.8. Theorem. — Let A € K"*". Then det(A) #0 <= A~! is the unique g-inverse
and Moore-Penrose pseudoinverse of A.

Proof. We have trivially AA7'A = A so A™! is a g-inverse. If G is a g-inverse of A then
AGA=A = A Y AGAA' =A71(A)A™ —= G=4"1

Hence, A~! is the unique g-inverse of A. O
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CHAPTER 4.

Exam review

4.1. Internal assessment

4.1.1. Question. — Define a linear functional. Give 3 distinct examples of linear functionals
on R,

Let V be an F-vector space and V' its dual space. Then show that the dual map of the
identity operator on V is the identity operator on V’.

4.1.2. Question. — Let V be a finite dimensional F-vector space. Let T : V — V be a
linear operator.

(a) Prove that T has at most 1 + dim(im(7")) distinct eigenvalues.

(b) Let the minimal polynomial of T be 225 — 3z* + 52% — 622 + 7z — 6. Is T invertible ?
Justify.

(c) Suppose T* = T. Is T diagonalisable ? Justify.
Solutions. —

1. Let V be a vector space over a field F. A linear functional ¢ is a linear transformation
¢ :V — T, ie. ¢ maps V into F. RI% is the real vector space of all functions

f:]0,1] — R. Three distinct examples of linear functionals on R* are
a) o(f(x)) = f(0),
b) ¢(f(x)) = f(1/2) and
c) ¢(f(x)) = f(1)

for all z € [0,1], f € RO,

Let id : V' — V be the identity operator on V, i.e. id(z) =z Vz € V.Letid : V' — V'
be the dual mapping of the identity operator id. Then by definition

id'(¢(z)) = (¢ 0id)(z) = ¢(id(z)) = ¢(z) Vo e V' zeV.
Hence, id’ is the identity operator on V'.

2. (a) Let Aq,..., A, be the distinct nonzero eigenvalues of T. Let vy, ..., v, be the
corresponding eigenvectors. Then {vy,...,v,,} is linearly independent.

Now if v is an eigenvector corresponding to a nonzero eigenvalue A then
Tw)=: = T(w/A)=v = veim(T).

Hence, {v1,...,v,} C im(7T). Also the eigenvalue may not be nonzero. Thus,
m < 1+ dim(im(7)).
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4.1. INTERNAL ASSESSMENT

(b) A linear operator T is invertible iff its minimal polynomial my(z) has nonzero
constant term, i.e. my(0) # 0. We have mr(0) = —6 # 0 so T is invertible.

(¢) We assume F is algebraically closed (say F = C). Then
T'=T = T*-T=T(T*-1)=0.
So T satisfies
flx)=2@*-1)=z(z - 1)(z —w)(z —w?) =0,

where w is a primitive cube root of unity. Then mp(z) | f(x).

So either mr(z) =z, x(x — 1), z(z — 1)(z —w) or z(z — 1)(r —w)(z — w?). In
every case, the minimal polynomial my(x) splits as a product of linear terms.
Hence, T is diagonalisable.
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