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Chapter 1.

Dual spaces 1
1.1. Dual spaces
1.1.1. Linear functionals. — Vector spaces arise naturally from the set of solutions to a
system of linear equations (hence why they’re also called linear spaces). The dual space of a
vector space arises from the set of linear functionals over a vector space. Linear functionals
are the foundation of the subject of functional analysis and find applications in the theory of
distributions as well as quantum mechanics. Let V,W be two F-vector spaces. Consider the
set of all T : V !W such that T is a linear transformation. Denote this set by L(V,W ), i.e.,

L(V,W ) :=
{
T : V !W

∣∣∣ T is linear
}
.

As linear transformations are homomorphisms between vector spaces, L(V,W ) is oft denoted
Hom(V,W ). This L(V,W ) forms an F-vector space, where for all f, g ∈ L(V,W ), λ ∈ F, v ∈ V

(f + g)(v) = f(v) + g(v),
(λf)(v) = λf(v).

If V and W are finite-dimensional with dim(V ) = m, dim(W ) = n, then V ∼= Fm, W ∼= Fn

and V ×W ∼= V ⊕W.1 Thus V ×W ∼= Fm+n. In particular, we have L(V,W ) ∼= Fm×n, thus
dim(L(V,W )) = mn. If W = F, we call the elements of L(V,F) linear functionals. More
concretely, a linear functional on an F-vector space V is a function f : V ! F such that
f(λ1x1 + λ2x2) = λ1f(x1) + λ2f(x2) for all x1, x2 ∈ V, λ1, λ2 ∈ F.

1.1.2. Example. — Let P = C[t] be the C-vector space of all complex polynomials in t,
and when we specify a subscript n (so Pn) with degree at most n. Define f(x(t)) = x(0) (the
constant term) of every polynomial x(t) ∈ P. This is a linear functional f : P ! C. More
generally, for any n scalars λ1, . . . , λn ∈ C and real t1, . . . , tn the function

f(x(t)) = λ1x(t1) + · · · + λnx(tn)

is a linear functional f ∈ L(P,C).
Another linear functional, in a sense a limiting case of the above, is obtained as follows.

Let (a, b) be an open interval on the real t-axis and let g(t) : (a, b)! C be integrable; for a
complex-valued function such as g we simply have

∫
g =

∫
ℜ(g) + i

∫
ℑ(g). Then

f(x(t)) =
∫ b

a

g(t)x(t)dt

defines a linear functional f ∈ L(P,C).
1Recall that U = V ⊕ W if U = V + W and V ∩ W = {0}. Or equivalently, if U = V + W and the

representation of every w ∈ W as u + v, u ∈ U, v ∈ V is unique.
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1.1. Dual spaces

1.1.3. Example. — Let C[0, 2π] be the vector space of all continuous f : [0, 2π]! R. Then
for any g(t) ∈ C[0, 2π] we have that the nth Fourier coefficient h(x(t)) of x(t) ∈ C[0, 2π],

h(x(t)) = 1
2π

∫ 2π

0
x(t)g(t)dt

is a linear functional on C[0, 2π]. So h ∈ L(C[0, 2π],R).
In general we have linear functionals η ∈ L(C[a, b],R) defined by (for fixed g0 ∈ C[a, b]),

η : f 7!
∫ b

a

f(t)g0(t)dt.

1.1.4. Example. — Let Cn(U) be the subspace of RU for a subset U ⊆ R consisting of
all n-times differentiable f : U ! R. Then the differential operator D : Cn(R)! R sending
f 7! f ′ is a linear functional D ∈ L(Cn(U),R).

Let C∞(U) denote the vector space of all infinitely differentiable functions f ∈ RU where
U is a compact subset of R. Then a distribution on U is a continuous linear functional
f ∈ L(C∞(U),R).

1.1.5. Example. — Let tr : Fn×n ! F be the trace of a square matrix of order n, defined as

tr

(
(aij)1⩽i⩽n

1⩽j⩽n

)
=

n∑
i=1

aii. Then tr(λA+ µB) = λ tr(A) + µ tr(B), so it is a linear functional

on Fn×n, i.e., tr ∈ L(Fn×n,F).

1.1.6. Example. — Given a field F, Fn is an n-dimensional F-vector space. The inner

product v · w of v =

v1
...
vn

 , w =

w1
...
wn

 ∈ Fn is the scalar v · w = vTw =
∑n

i=1 viwi ∈ F.

Hence any v ∈ Fn defines a linear functional in L(Fn,F) by w 7! v · w. The exterior
product is defined as v ∧ w = vwT ∈ Fn×n. In the Dirac notation of quantum mechanics,
inner products are called bra-ket products while exterior products are called ket-bra products.

1.1.7. Example. — Let V be a finite dimensional F-vector space with dim(V ) = n and
β = {x1, . . . , xn} be an ordered basis for V. Let the coordinate vector of x wrt β be

[x]β =


a1
a2
...
an

 .

Then for each 1 ⩽ i ⩽ n, we define the ith projection map fi(x) := ai, which yields the
linear functionals fi ∈ L(V,F). In particular, the linear functionals fi(xj) = δij yield exactly
the Kronecker delta

δij =
{

1 if i = j

0 if i ̸= j
.

1.1.8. Definition (Linear functional). — A linear functional on an F-vector space V is a
linear transformation from V to its field of scalars, i.e., f : V ! F. Equivalently, f ∈ L(V,F).
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1.1. Dual spaces

1.1.9. Definition (Dual space). — For an F-vector space V, the dual space of V is the
vector space of all linear functionals on V, i.e., V ′ = L(V,F).

1.1.10. Theorem. — Let V be a finite-dimensional F-vector space. Then dim(V ) =
dim(V ′).

Proof. dim(V ′) = dim(L(V,F)) = dimF(V ) dimF(F) = dim(V ).

1.1.11. Definition (Dual basis). — Let V be an F-vector space and B = {v1, v2, . . . , vn}
be a basis of V. Then the dual basis of B is the set B′ = {ϕ1, ϕ2, . . . , ϕn} of elements of V ′,
where each ϕi is a linear functional on V s.t.

ϕi(vj) =
{

1 if j = i

0 if j ̸= i.

1.1.12. Example. — The dual basis of the standard basis {e1, . . . , en} of Fn is {ϕ1, . . . , ϕn}
where

ϕi(ej) =
{

1 if j = i

0 if j ̸= i.

1.1.13. Example. — The dual basis of the standard basis {(0, 1), (1, 0)} of R2 is {ϕ1, ϕ2}
where

ϕ1(1, 0) = 1, ϕ2(1, 0) = 0
ϕ1(0, 1) = 0, ϕ2(0, 1) = 1

and as a linear functional is of the form ϕ(x, y) = ax+ by, we get ϕ1(x, y) = x, ϕ2(x, y) = y.

1.1.14. Question. — Find the dual basis of:

1. {(−1, 2), (0, 1)} of R2. Ans. {ϕ1, ϕ2} given by ϕ1(x, y) = −x, ϕ2(x, y) = 2x+ y.

2. {(2, 1), (3, 1)} of R2. Ans. {ϕ1, ϕ2} given by ϕ1(x, y) = −x+ 3y, ϕ2(x, y) = x− 2y.

3. {(1, 0,−1), (−1, 1, 0), (0, 1, 1)} of R3. Ans. {ϕ1, ϕ2, ϕ3} given by

ϕ1(x, y, z) = 1
2(x+ y − z), ϕ2(x, y, z) = 1

2(−x+ y − z), ϕ3(x, y, z) = 1
2(x+ y + z).

The next result shows that the dual basis of a basis of V consists of the linear functionals
on V that yield the coefficients for expressing a vector in V as a linear combination of the
basis vectors.

1.1.15. Theorem. — Suppose {v1, . . . , vn} is a basis of V and {ϕ1, . . . , ϕn} is the dual
basis. Then

v = ϕ1(v)v1 + · · · + ϕn(v)vn ∀v ∈ V. (1.1.1)

Proof. Since v ∈ V and {v1, . . . , vn} is a basis of V, there exist λ1, . . . , λn ∈ F s.t.

v = λ1v1 + · · · + λnvn.

Then for i = 1, . . . , n we have ϕi(v) = λi.
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1.1. Dual spaces

The next result shows that the dual basis is indeed a basis of the dual space.

1.1.16. Theorem. — Let V be a finite-dimensional F-vector space. Then the dual space
of a basis of V is a basis of V ′.

Proof. Suppose {v1, . . . , vn} is a basis of V and {ϕ1, . . . , ϕn} is the dual basis. Then to show
linear independence, suppose there exist λ1, . . . , λn ∈ F s.t.

λ1ϕ1 + · · · + λnϕn = 0.

But for each k = 1, . . . , n we have

(λ1ϕ1 + · · · + λnϕn)(vk) = λk.

Thus, λ1 = · · · = λn = 0. So {ϕ1, . . . , ϕn} is a linearly independent set in V ′ with
n = dim(V ′) elements. Hence, {ϕ1, . . . , ϕn} is a basis of V ′.

1.1.17. Question. — Let A,B ∈ O(n), 2 s.t. det(A) + det(B) = 0.
Show that A+B /∈ GLn(R). 3

Solution. As A and B are real orthogonal and det(A) = − det(B), we have

det(A) det(B) = −1.

Hence, det(A+B)

= det
(
A(BT +AT )B

)
= − det(BT +AT ) = − det

(
(B +A)T

)
= − det(B +A)

and the assertion follows.

1.1.18. Question. — Let A ∈ SO(2). 4 Show that there exists θ s.t. A =
(

cos θ sin θ
− sin θ cos θ

)
.

Solution. In order for a matrix to be in SO(2), it has to be (a) orthogonal, and (b) have
determinant 1.

For (a) we need in particular that each row is a unit vector. Every unit vector has the
form (cos θ, sin θ) for some θ, so our matrix necessarily has the form(

cos θ sin θ
cosϕ sinϕ

)
In addition the rows must be perpendicular to each other. Our two unit vectors are

perpendicular if and only if ϕ = θ ± π
2 , up to irrelevant multiples of 2π. By some basic

trigonometric identities, this means that the possibilites are now(
cos θ sin θ

− sin θ cos θ

)
and

(
cos θ sin θ
sin θ − cos θ

)
The first of these always has determinant 1, so it is in SO(2). The second has determinant

−1, so it is not in SO(2).
2orthogonal group of order n i.e. orthogonal matrices of order n
3general linear group of order n i.e. invertible matrices of order n
4special orthogonal group of order 2 i.e. orthogonal matrices of order 2 and determinant 1
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1.1. Dual spaces

1.1.19. Question. — Let A,B ∈ O(n) where n is odd s.t. det(A) = det(B). Then show
that A−B /∈ GLn(R).

1.1.20. Question. — Let A ∈ GLn(R) s.t. sum of each row (resp. column) of A is r (resp.
c). Show that the sum of each row (resp. column) of A−1 is r−1 (resp. c−1).

1.1.21. Definition (Dual map or transpose map). — Let V1, V2 be two F-vector spaces
and T ∈ L(V1, V2). Then the dual of T is a linear map T ′ ∈ L(V ′

2 , V
′

1) defined by

T ′(ϕ) = ϕ ◦ T ∀ϕ ∈ V ′
2 . (1.1.2)

In particular, T ′(ϕ) ∈ V ′
1 .

1.1.22. Proposition. — Dual map is a linear map.

Proof.

T ′(λϕ1 + ϕ2) = (λϕ1 + ϕ2) ◦ T
= (λϕ1 ◦ T ) + (ϕ2 ◦ T )
= λ(ϕ1 ◦ T ) + (ϕ2 ◦ T )
= λT ′(ϕ1) + T ′(ϕ2).

1.1.23. Theorem (Properties of dual map). — Let T ∈ L(V1, V2). Then,

1. (S + T )′ = S′ + T ′ ∀S ∈ L(V1, V2).

2. (λT )′ = λT ′ ∀λ ∈ F.

3. (ST )′ = T ′S′ ∀S ∈ L(V1, V2).

Proof. 1.

(S + T )′(ϕ) = ϕ ◦ (S + T )
= (ϕ ◦ S) + (ϕ ◦ T )
= S′(ϕ) + T ′(ϕ).

2.

(λT )′(ϕ) = ϕ ◦ (λT )
= λ(ϕ ◦ T )
= λT ′(ϕ).

3.

(ST )′(ϕ) = ϕ ◦ (ST )
= (ϕ ◦ S) ◦ T
= S′(ϕ) ◦ T
= T ′(S′(ϕ))
= (T ′S′)(ϕ).
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1.1. Dual spaces

1.1.24. Definition (Annihilator). — Let V be an F-vector space and W be a nonempty
subset of V. Then the annihilator of W, denoted by W ◦, is defined by

W ◦ = {ϕ ∈ V ′ : ϕ(w) = 0 ∀w ∈ W} . (1.1.3)

1.1.25. Proposition. — W ◦ is a subspace of the dual space V ′.

Proof. Let ϕ1, ϕ2 ∈ V ′ and λ ∈ F.

ϕ1, ϕ2 ∈ W ◦ =⇒ λϕ1(w) = ϕ2(w) = 0 ∀w ∈ W

=⇒ (λϕ1 + ϕ2)(w) = λϕ1(w) + ϕ2(w) = 0
=⇒ λϕ1 + ϕ2 ∈ W ◦.

1.1.26. Example. — In R5, with standard basis {e1, e2, e3, e4, e5}, let the corresponding
dual basis be {ϕ1, ϕ2, ϕ3, ϕ4, ϕ5} of (R5)′.

Let W = span(e1, e2) = {(x1, x2, 0, 0, 0) : x1, x2 ∈ R}. Then W ◦ = span({ϕ3, ϕ4, ϕ5}).
dim(W ) = 2,dim(W ◦) = 3 so dim(W ◦) = dim(R5) − dim(W ). Every ϕi (i = 1, . . . , 5) is

such that
ϕi(x1, x2, x3, x4, x5) = xi.

Let ϕ ∈ span({ϕ3, ϕ4, ϕ5}) then there exist λ1, λ2, λ3 ∈ R s.t.

ϕ = λ1ϕ3 + λ2ϕ4 + λ3ϕ5.

If ṽ = (x1, x2, 0, 0, 0) ∈ W then

ϕ(ṽ)
= λ1ϕ3(ṽ) + λ2ϕ4(ṽ) + λ3ϕ5(ṽ)
= 0 + 0 + 0 = 0 ∈ W ◦.

Thus, span({ϕ3, ϕ4, ϕ5}) ⊆ W ◦.
Let ϕ ∈ W ◦, then

ϕ = λ1ϕ3 + λ2ϕ4 + λ3ϕ5.

As e1 ∈ W and ϕ ∈ W ◦,

ϕ(e1) = (λ1ϕ3 + λ2ϕ4 + λ3ϕ5)(e1)
= λ1ϕ3(e1) + λ2ϕ4(e1) + λ3ϕ5(e1)
= λ1 ∈ R.

Thus, W ◦ = span({ϕ3, ϕ4, ϕ5}).
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1.1. Dual spaces

1.1.27. Theorem. — Let V be a finite-dimensional F-vector space and W a subspace of
V. Then

dim(W ◦) = dim(V ) − dim(W ). (1.1.4)

Proof. Let i : W ! V be the inclusion map defined by i(w) = w ∀w ∈ W.
Then i is a linear map and the dual map i′ : V ′ !W ′ is a linear map too. By rank-nullity

theorem, 5

dim(ker i′) + dim(im i′) = dim(V ′).

Now, ker i′ = W ◦ so dim(ker i′) = dim(W ◦). Also dim(V ′) = dim(V ). Then,

dim(W ◦) + dim(im i′) = dim(V ).

If ϕ ∈ W ′ then ϕ can be extended to a linear functional ψ on V. Now, i′(ψ) = ψ ◦ i = ϕ,
which implies that ϕ ∈ im i′ so W ′ ⊆ im i′. Also, im i′ ⊆ W ′, so im i′ = W ′.

Using dim(W ) = dim(W ′), we get dim(W ◦) = dim(V ) − dim(W ).

1.1.28. Theorem. — Let V be a finite-dimensional F-vector space and W a subspace of
V. Then

1. W ◦ = {0} ⇐⇒ W = V.

2. W ◦ = V ′ ⇐⇒ W = {0}.

Proof. Using Theorem 1.1.27,

W ◦ = {0}
⇐⇒ dim(W ◦) = 0
⇐⇒ dim(V ) = dim(W )
⇐⇒ V = W.

Similarly,

W ◦ = V ′

⇐⇒ dim(W ◦) = dim(V ′) = dim(V )
⇐⇒ dim(W ) = dim(V ) − dim(W ◦) = 0
⇐⇒ W = {0}.

5rank(T ) = dim(im T ), nullity(T ) = dim(ker T ).
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1.1. Dual spaces

1.1.29. Theorem. — Let V1, V2 be two F-vector spaces and T ∈ L(V1, V2). Then

1. kerT ′ = (imT )◦.

2. dim(kerT ′) = dim(kerT ) + dim(V2) − dim(V1).

Proof. 1. By definition, T ′ : V ′
2 ! V ′

1
ϕ 7! ϕ◦T

so

ϕ ∈ kerT ′ =⇒ T ′(ϕ) = 0
=⇒ ϕ ◦ T = 0
=⇒ (ϕ ◦ T )(v) = 0 ∀v ∈ V1

=⇒ ϕ ∈ (imT )◦.

So kerT ′ ⊆ (imT )◦. Now,

ϕ ∈ (imT )◦

=⇒ (ϕ ◦ T )(v) = 0 ∀v ∈ V1

=⇒ ϕ ◦ T = 0
=⇒ T ′(ϕ) = 0 =⇒ ϕ ∈ kerT ′.

Thus, kerT ′ = (imT )◦.

2.

dim(kerT ′) = dim((imT )◦) = dim(V2) − dim(imT )
= dim(V2) − (dim(V1) − dim(kerT )) (by rank-nullity theorem)
= dim(kerT ) + dim(V2) − dim(V1).

1.1.30. Theorem. — Let V1, V2 be two F-vector spaces and T ∈ L(V1, V2). Then T is
surjective ⇐⇒ T ′ is injective.

Proof. T is surjective so imT = V2. Now,

imT = V2 ⇐⇒ (imT )◦ = {0}
⇐⇒ kerT ′ = {0}

which is equivalent to saying that T ′ is injective.

8



1.1. Dual spaces

1.1.31. Theorem. — Let V1, V2 be two F-vector spaces and T ∈ L(V1, V2). Then

1. dim(imT ′) = dim(imT ).

2. imT ′ = (kerT )◦.

Proof.

dim(imT ′) = dim(V ′
2) − dim(kerT ′)

= dim(V ′
2) − dim((imT )◦)

= dim(V ′
2) − dim(V2) + dim(imT ).

Hence, dim(imT ′) = dim(imT ). For the second part, let ϕ ∈ imT ′.
Then ∃ψ ∈ V ′

2 s.t. ϕ = T ′(ψ).
Now, if v ∈ kerT then

ϕ(v) = 0 =⇒ T ′(ψ(v)) = 0
=⇒ (ψ ◦ T )(v) = 0
=⇒ ψ(T (v)) = ψ(0) = 0.

So ϕ ∈ (kerT )◦. Now,

dim(imT ′) = dim(imT ) = dim(V1) − dim(kerT ) = dim((kerT )◦).

Alternative proof of T injective ⇐⇒ T ′ surjective.

T is injective ⇐⇒ kerT = {0}
⇐⇒ (kerT )◦ = V ′

1

⇐⇒ imT ′ = V ′
1 .

1.1.32. Definition (Matrix representation of dual maps). — Let V1 be a finite-dimensional
F-vector space with an ordered basis β1 = {v1, . . . , vn} along with its dual ordered basis
β′

1 = {ϕ1, . . . , ϕn} of V ′
1 . Let V2 be another finite-dimensional F-vector space with an ordered

basis β2 = {u1, . . . , um} along with its dual ordered basis β′
2 = {ψ1, . . . , ψm} of V ′

2 .
Let T : V1

β1

! V2
β2

have matrix m(T ) while T ′ : V ′
2

β′
2

! V ′
1

β′
1

has m(T ′). Then

m(T ′) = (m(T ))T
.

1.1.33. Remark. — This is why dual map is also called transpose map. Also, matrix
multiplication is defined the way it is so that

m(ST ) = m(S)m(T ) holds.

1.1.34. Theorem. — Let V1, V2 be two F-vector spaces and T ∈ L(V1, V2). Then

m(T ′) = (m(T ))T
. (1.1.5)

9



1.2. Invariant subspaces

1.1.35. Theorem. — Let A ∈ Fm×n. Then column rank of A = row rank of A.

Proof. Let A = m(T ) where T ∈ L(Fn,Fm). Using dual map then,

column rank of A
= column rank of m(T )
= column rank of m(T ′)
= column rank of (m(T ))T

= row rank of m(T ).

1.1.36. Remark. — Rank is invariant under row reduction since RREF is unique.

1.1.37. Definition (Double dual space). — Let V be an F-vector space and V ′ be the
dual space of V. The dual space V ′′ of V ′ is the double dual space of V.

1.1.38. Theorem. — V ∼= V ′′.

Proof. Define T : V ! V ′′. Then Tv(ϕ) = ϕ(v) ∀v ∈ V.

This is independent of choice of basis. If V is finite-dimensional, then dim(V ) =
dim(V ′) − dim(V ′′).

1.2. Invariant subspaces
1.2.1. Definition (T -invariant subspace). — Let V be an F-vector space and T : V ! V
be a linear operator. Let W be an F-subspace of V. Then W is called T -invariant or
invariant under T if T (W ) ⊆ W.

1.2.2. Remark. — This is analogous to the notion of a characteristic subgroup H of G
which is a subgroup s.t. f(H) ⊆ H for every automorphism f : G! G.

Inner automorphism is defined: fg(x) = gxg−1 ∀x ∈ G.
Normal subgroups are invariant under inner automorphisms, but characteristic subgroups

are invariant under any automorphisms. Hence, every characteristic subgroup is normal but
the converse is not true.

T -invariant subspaces. — Thus, for a T -invariant subspace W, T (w) ∈ W for all w ∈ W.
The restriction of T to W is a linear operator over W.

Trivially, {0}, V are always invariant subspaces of V.
Further for any linear operator T ∈ L(V ),

kerT = {x ∈ V : T (v) = 0}, imT = {T (x) : x ∈ V }

are invariant under T.
Let x ∈ kerT. Then

T (x) = 0 =⇒ T (T (x)) = T (0) = 0 =⇒ T (x) ∈ kerT.

So, T (kerT ) ⊆ kerT. Similarly, T (imT ) ⊆ imT.
If T is a nonsingular (invertible) linear operator, then kerT = {0} and imT = V.
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1.2. Invariant subspaces

1.2.3. Question. — Let V = R3 over R and define f1, f2, f3 ∈ V ′ as follows:

f1(x, y, z) = x− 2y, f2(x, y, z) = x+ y + z, f3(x, y, z) = y − 3z.

Show that {f1, f2, f3} is a basis for V ′ and then find a basis of V for which it is the dual
basis.

Solution.

λ1f1 + λ2f2 + λ3f3 = 0
=⇒ λ1(x− 2y) + λ2(x+ y + z) + λ3(y − 3z) = 0
=⇒ (λ1 + λ2)x+ (λ2 + λ3 − 2λ1)y + (λ2 − 3λ3)z = 0
=⇒ −λ2 = λ1, 3λ2 + λ3 = 0, λ2 = 3λ3

solving which yields λ1 = λ2 = λ3 = 0.
Let B = {v1, v2, v3} be a basis of V for which {f1, f2, f3} is a dual basis. Then, using

Definition 1.1.11, we get that

B =
{(

2
5 ,

−3
10 ,

−1
10

)
,

(
3
5 ,

3
10 ,

1
10

)
,

(
1
5 ,

1
10 ,

−3
10

)}
.

1.2.4. Question. — Let V be an F-vector space, T ∈ L(V ) and W a subspace of V.
Prove that W is T -invariant in V ⇐⇒ W ◦ is T ′ in V ′.

Solution. Let W be T -invariant subspace of V. Then T (W ) ⊆ W. So T (w) ∈ W ∀w ∈ W.
Now, ∀w ∈ W, f ∈ W ◦,

(T ′(f))(w) = (f ◦ T )(w)
= f(T (w))
= 0 ∵ f ∈ W ◦, T (w) ∈ W.

So T ′(f) ∈ W ◦, i.e. T ′(W ◦) ⊆ W ◦.
Conversely, suppose that T ′(W ◦) ⊆ W ◦. Then T ′(f) ∈ W ◦ ∀f ∈ W ◦.
If T (w) /∈ W for some w ∈ W then ∃f ∈ W ◦ : (f ◦ T )(w) ̸= 0 =⇒ T ′(f) /∈ W ◦.

Absurdity. Hence, T (w) ∈ W ∀w ∈ W.

1.2.5. Question. — Let V = {a+ bx : a, b ∈ R}. (real polynomials with deg ⩽ 1.)
Find a basis {v1, v2} of V which is dual to the basis {ϕ1, ϕ2} of V ′ defined by

ϕ1(f(x)) =
∫ 1

0
f(x)dx, ϕ2(f(x)) =

∫ 2

0
f(x)dx.

Solution. Let v1 = a+ bx, v2 = c+ dx.
Then ϕ1(v1) = 1, ϕ1(v2) = 0 while ϕ2(v1) = 0, ϕ2(v2) = 1.
Integrating and solving the the resulting system in each case, we get

v1 = 2 − 2x, v2 = −1
2 + x.

11



1.2. Invariant subspaces

1.2.6. Question. — Let V be an F-vector space and W1,W2 be two subspaces of V.
Prove that

1. (W1 +W2)◦ = W ◦
1 ∩W ◦

2 .

2. (W1 ∩W2)◦ = W ◦
1 +W ◦

2 .

1.2.7. Question. — Let ϕ : R2 ! R be a linear functional defined by

ϕ(x, y) = x− 2y ∀x, y ∈ R.

Find the dual map for each of the following operators on R2,

1. T (x, y) = (x, 0).

2. T (x, y) = (y, x+ y).

3. T (x, y) = (2x− 3y, 5x+ 2y).

Solution. (T ′(ϕ))(x, y) = (ϕ ◦ T )(x, y) = ϕ(T (x, y))

1. = ϕ(x, 0) = x.

2. = ϕ(y, x+ y) = y − 2x− 2y = −2x− y.

3. = ϕ(2x− 3y, 5x+ 2y) = 2x− 3y − 10x− 4y = −8x− 7y.

12



1.3. Diagonalisation of a linear operator

1.3. Diagonalisation of a linear operator
Eigenvalues and eigenvectors. —

For real square matrices A ∈ Rn×n Let V be a finite-dimensional F-vector space
we had λ ∈ R is an eigenvalue of A then U = {λv : λ ∈ F} = span(v)

if Ax = λx for some x ̸= 0. is a subspace of V of dimension 1.

If U is invariant under a linear operator T : V ! V then T (u) ∈ U ∀u ∈ U. Thus,
T (u) = λu for some scalar λ ∈ F.

Then span(u) is a 1-dimensional T -invariant subspace of U.

1.3.1. Definition (Eigenvalue of a linear operator). — Let T be a linear operator on V and
U be T -invariant in V. If T (u) = λu holds for some u ∈ U : u ̸= 0 then λ is an eigenvalue
of T.

1.3.2. Example. — Let T ∈ L(R3) s.t. T (x, y, z) = (7x+ 3z, 3x+ 6y + 9z,−6y).
Then T (3, 1,−1) = (18, 6,−6) = 6(3, 1,−1). So λ = 6 is an eigenvalue of T.

1.3.3. Theorem. — Let V be a finite-dimensional F-vector space. Then the following are
equivalent for T ∈ L(V ),

1. λ is an eigenvalue of T.

2. T − λI is not injective.6

3. T − λI is not surjective.

4. T − λI is not bijective.

5. det(T − λI) = 0. In other words, T − λI is singular.

Proof. (1.) ⇐⇒ (2.):

∃v ̸= 0 s.t. T (v) = λv

⇐⇒ (T − λI)(v) = 0
⇐⇒ ker (T − λI) ̸= {0}

⇐⇒ T is not injective.

(2.) ⇐⇒ (3.) ⇐⇒ (4.): Follows from the fact that
T − λI is injective ⇐⇒ T − λI is surjective ⇐⇒ T − λI is bijective.

(5.) ⇐⇒ (1.):

det(T − λI) = 0
⇐⇒ (T − λI)(v) = 0
⇐⇒ T (v) = λv

for some v ̸= 0.
6I is the identity operator I : V ! V s.t. x 7! x.
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1.3. Diagonalisation of a linear operator

1.3.4. Theorem. — Let V be a finite-dimensional F-vector space and T ∈ L(V ). Let v ̸= 0
be an eigenvector of T corresponding to an eigenvalue λ. Let λ′ ∈ F. Then λ′v is also an
eigenvector of T corresponding to the same eigenvalue λ.

Proof.

T (λ′v) = λ′T (v)
= λ′(λv)
= (λ′λ)v
= (λλ′)v
= λ(λ′v).

1.3.5. Example. — Let T ∈ L(F2) s.t. T (x, y) = (−y, x).
For F = R, there is no λ ∈ R : T (v) = λv so no real eigenvalues.
But for F = C, T has eigenvalues λ = ±i. This is a reflection of the fact that C is

algebraically closed.
Eigenvalues of a linear operator T always exist iff F is an algebraically closed field. The

eigenvalues of T satisfy some polynomial

f(x) = a0 + a1x+ · · · + anx
n, or

f(T ) = a0 + a1T + · · · + anT
n,

where Tn = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
n times

.

This polynomial is in fact the characteristic polynomial of T.

1.3.6. Definition (Characteristic polynomial). — Let V be an F-vector space and
T ∈ L(V ), then the polynomial

cT (x) = det(T − xI)

is called the characteristic polynomial of T.

1.3.7. Question. — Show that 0 is an eigenvalue of T ∈ L(V ) iff T is singular.

Solution. det(T − (0)I) = 0 ⇐⇒ det(T ) = 0.

1.3.8. Question. — If λ is an eigenvalue of a nonsingular operator T, then show that λ−1

is an eigenvalue of T−1.

Solution. There exists v ̸= 0 s.t.

T (v) = λv

=⇒ (T−1T )(v) = T−1(λv)
= λT−1(v)

=⇒ v = λT−1(v)
=⇒ λ−1v = T−1(v).

14



1.3. Diagonalisation of a linear operator

Minimal polynomial. —

1.3.9. Theorem (Existence and uniqueness). — Let V be a finite-dimensional F-vector
space with dim(V ) = n and T ∈ L(V ). Then there exists a unique monic polynomial
mT (x) ∈ F[x] of smallest degree s.t. mT (T ) = 0. Furthermore, deg(mT (x)) ⩽ n.

Proof. Consider I[x] = {f(x) ∈ F[x] : f(T ) = 0}. Then I[x] is an ideal of F[x]. We know
that, as F is a field, F[x] must be PID. Thus, I[x] = ⟨m1(x)⟩ , i.e.,

f(x) = m1(x)q(x), q(x) ∈ F[x].

Let, m1(x) = a0 + a1x+ a2x
2 + · · · + akx

k ∈ F[x] be the least degree polynomial in I[x]
s.t. m1(T ) = 0. Set mT (x) = a−1

k m1(x). Then mT (x) is a monic polynomial s.t.

mT (T ) = a−1
k m1(T ) = 0.

Thus, I[x] = ⟨mT (x)⟩ . Let m′
T (x) be another polynomial s.t. m′

T (T ) = 0. Then

mT (x) | m′
T (x),

so m′
T (x) = cmT (x) for some c ∈ F. If m′

T (x) is monic, then c = 1 so m′
T (x) = mT (x).

1.3.10. Definition (Minimal polynomial). — Let V be a finite-dimensional F-vector space
with T ∈ L(V ). Then the minimal polynomial of T is the unique monic polynomial
mT (x) ∈ F[x] of smallest degree s.t. mT (T ) = 0.

1.3.11. Theorem. — Let mT (x) be the minimal polynomial of T ∈ L(V ). Then for any
polynomial f(x) ∈ F[x] : f(T ) = 0,

mT (x) | f(x).

In particular, mT (x) | cT (x).
So, deg(mT (x)) ⩽ deg(cT (x)).

Proof. By division algorithm, ∃q(x), r(x) ∈ F[x] s.t.

f(x) = q(x)mT (x) + r(x).

Thus, 0 = f(T ) = q(T )mT (T ) + r(T ) = 0 + r(T ). Then, we must have r(x) = 0 for all x as
deg(mT (x)) ⩽ deg(r(x)). Thus f(x) = q(x)mT (x) which means mT (x) | f(x).

By Cayley-Hamilton theorem, cT (T ) = 0. So mT (x) | cT (x) as well.

1.3.12. Theorem. — Let V be a finite-dimensional F-vector space with T ∈ L(V ), mT (x)
minimal polynomial of T.

A scalar λ is an eigenvalue of T iff mT (λ) = 0. Hence, the characteristicpolynomial and
minimal polynomial have the same zeros.

Proof. mT (x) | cT (x) =⇒ cT (x) = q(x)mT (x) =⇒ cT (λ) = q(λ)mT (λ). If λ is a zero of
mT (x) then cT (λ) = q(λ)(0) = 0 so λ is a zero of cT (x), i.e., an eigenvalue of T.

Conversely, let λ be an eigenvalue of T. Then cT (λ) = 0. Let x ̸= 0 be an eigenvector
corresponding to λ,

0 = 0(x) = mT (T )(x) = mT (λ)x =⇒ mT (λ) = 0.

So mT (x) and cT (x) have the same zeros.
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1.3.13. Theorem. — Let V be a finite-dimensional F-vector space with T ∈ L(V ), mT (x)
minimal polynomial of T, cT (x) characteristic polynomial of T. Suppose that cT (x) factors as

cT (x) = (x− λ1)n1(x− λ2)n2 · · · (x− λk)nk (1.3.1)

where λ1, λ2, . . . , λk are distinct eigenvalues of T. Then there exist integers m1,m2, . . . ,mk

s.t. 1 ⩽ mi ⩽ nj for j = 1, 2, . . . , k and

mT (x) = (x− λ1)m1(x− λ2)m2 · · · (x− λk)mk . (1.3.2)

Equivalent conditions for invertibility. — T is invertible ⇐⇒ 0 is not an eigenvalue
of T ⇐⇒ 0 is not a root of mT (x) ⇐⇒ the constant term of mT (x) is nonzero.

Relationship between characteristic and minimal polynomial. — Let V be a
finite-dimensional F-vector space with T ∈ L(V ), then mT (x), cT (x) always exist and

mT (x) | cT (x).

In particular,

cT (x) = mT (x) ⇐⇒
{
v, T (v), T 2(v), . . . , Tn−1(v)

}
is a basis of V.

Let cT (x) = a0 + a1x+ a2x
2 + · · · + xn = mT (x).

1.3.14. Definition (Companion matrix). — The companion matrix of the monic
polynomial

p(x) = a0 + a1x+ a2x
2 + · · · + an−1x

n−1 + xn

is defined as

C(p) =


0 0 · · · 0 · · · −a0
1 0 · · · 0 · · · −a1
0 1 · · · 0 · · · −a2
...

...
. . .

...
. . .

...
0 0 · · · 1 · · · −an−1

 . (1.3.3)

1.3.15. Definition (Non-derogatory matrix). — A ∈ Fn×n is non-derogatory if cA(x) =
mA(x).

1.3.16. Question. — Find the minimal polynomial of the operator T ∈ L(R2) s.t.

T (x, y) = (x, 0).

Solution. As T (1, 0) = (1, 0), T (0, 1) = (0, 0), the matrix wrt standard basis is

A = m(T ) =
(

1 0
0 0

)
.

Then cA(x) = x(x− 1) = mT (x), i.e. mT (x) = x(x− 1).
This is because A(A− I) = 0 so mT (x) has to divide x(x− 1) but A ̸= 0 and A− I ≠ 0

so mT (x) = x(x− 1).
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1.3.17. Question. — Find the minimal polynomial of the operator T ∈ L(R2) s.t.

T (x, y) =
(
x+ 4y, 1

2x− y

)
.

Solution. We get cT (x) = x2 − 3 from

m(T ) =
(

1 4
1
2 −1

)
.

So T 2 − 3I = 0 needs to be satisfied by the minimal polynomial. But T ̸= ±
√

3I, so
mT (x) = x2 − 3.

Two matrices may have the same characteristic polynomial but different minimal polyno-
mials.

1.3.18. Question. — Find the characteristic and minimal polynomial of

A =

4 −2 2
6 −3 4
3 −2 3

 and B =

3 −2 2
4 −4 6
2 −3 5

 .

Solution. cA(x) = det(A− xI) = (x− 1)2(x− 2) = det(B − xI) = cB(x).
But mA(x) = (x− 1)(x− 2) ̸= (x− 1)2(x− 2) = mB(x).

1.3.19. Proposition. — cA(x) = cAT (x), mA(x) = mAT (x).

Proof. mA(x) = a0 + a1x+ a2x
2 + · · · + an−1x

n−1 + xn with mA(A) = 0. But

mA(AT ) = mA(A)T = 0T = 0

as p(AT ) = p(A)T for any polynomial p(x).
So mA(x) is the minimal polynomial of A and AT . Consequently, cA(x) = cAT (x).

1.3.20. Question. — Find a matrix A having minimal polynomial x3 − 8x2 + 5x+ 7. Is A
invertible ? Justify.

Solution. A =

0 0 −7
1 0 −5
0 1 8

 . Then A is invertible as the constant term of the minimal

polynomial is 7 ̸= 0.

1.3.21. Definition (Block diagonal matrix). — A block diagonal matrix is of the form

M =
(
A 0
0 B

)
where A and B are square matrices.

In this case, mM (x) = lcm (mA(x),mB(x)) .
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1.3.22. Question. — Find the minimal polynomial of

M =


2 5 0 0 0
0 2 0 0 0
0 0 4 2 0
0 0 3 5 0
0 0 0 0 7

 .

Solution. M =
(
A 0
0 B

)
where

A =
(

2 5
0 2

)
, B =

4 2 0
3 5 0
0 0 7

 .

cA(x) = (x− 2)2, cB(x) = (x− 2)(x− 7)2. Now,

mA(x) = (x− 2)2, mB(x) = (x− 2)(x− 7).

So mM (x) = lcm
(
(x− 2)2, (x− 2)(x− 7)

)
= (x− 2)2(x− 7).

Eigenspace, algebraic multiplicity and geometric multiplicity. — Let V be a
finite-dimensional F-vector space and T ∈ L(V ) with eigenvalue λ ∈ F. Then

Wλ = {v ∈ V : T (v) = λv} = ker(T − λI)

is a subspace of V, called the eigenspace of λ in V.
Furthermore, λ is an eigenvalue of T ⇐⇒ ker(T − λI) ̸= {0} ⇐⇒ Wλ ̸= {0}.
Wλ is a T -invariant subspace of V,

T (Wλ) ⊆ Wλ.

1.3.23. Definition (Algebraic and geometric multiplicity). — The algebraic multiplicity
of an eigenvalue λ of T is the greatest integer k s.t. (x− λ)k is a factor of the characteristic
polynomial of T.

The geometric multiplicity of λ is the dimension of the eigenspace Wλ, dim(Wλ).

In general, given T ∈ L(V ) with

cT (x) = (x− λ1)r1(x− λ2)r2 · · · (x− λk)rk ,

mT (x) = (x− λ1)s1(x− λ2)s2 · · · (x− λk)sk

we have dim(Wλj ) ⩽ rj , i.e., geometric multiplicity ⩽ algebraic multiplicity. If dim(Wj) =
rj , then λj is a regular eigenvalue of T.
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Similar matrices and operators. — A,B ∈ Fn×n are similar if there exists P ∈ GLn(F) :
A = P−1BP. We can generalise this to linear operators.

1.3.24. Definition (Similar operators). — Let V be a finite-dimensional F-vector space
with two linear operators T1, T2 ∈ L(V ). Then T1 is similar to T2 if there exists an invertible
linear operator T3 ∈ L(V ) s.t. T1 = T−1

3 T2T3.

So, T1 ∼ T2 =⇒ T2 = (T−1
3 )−1T1T

−1
3 = T−1

4 T1T4.

1.3.25. Proposition. — T1 ∼ T2 =⇒ Tn
1 ∼ Tn

2 ∀n ∈ N.

Proof.

Tn
1 =

(
T−1

3 T2T3
)n

=
(
T−1

3 T2T3
)

· · ·
(
T−1

3 T2T3
)

= T−1
3 (T2 · · ·T2)T3

= T−1
3 Tn

2 T3.

1.3.26. Proposition. — T1 ∼ T2 and T1 non-singular =⇒ T2 non-singular and T−1
1 ∼

T−1
2 .

Proof. T1 = T−1
3 T2T3 =⇒ T−1

1 = (T−1
3 T2T3)−1 = T−1

3 T−1
2 (T−1

3 )−1 = T−1
3 T−1

2 T3.

1.3.27. Proposition. — T2 non-singular =⇒ T1T2 ∼ T2T1.

Proof. T−1
2 (T2T1)T2 = (T−1

2 T2)T1T2 = T1T2.

1.3.28. Theorem. — T1 ∼ T2 =⇒ cT1(x) = cT2(x). In other words, similar operators
have the same eigenvalues.

Proof. T1 = T−1
3 T2T3. So

det(T1 − xI) = det(T−1
3 T2T3 − xT−1

3 T3)
= det(T−1

3 (T2 − xI)T3)
= det(T−1

3 ) det(T2 − xI) det(T3)
= det(T2 − xI).

Thus, cT1(x) = cT2(x).

Two operators that have the same eigenvalues must have the same characteristic polyno-
mials.

1.3.29. Example. — 1. Let T1, T2 ∈ L(R2) be defined by

T1(x, y) = (3x+ 6y, 3y), T2(x, y) = (3x, 3y).

Then cT1(x) = (x− 3)2 = cT2(x).
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2. Let T1, T2 ∈ L(R2) be defined by

T1(x, y) = (x, y), T2(x, y) = (x+ y, y).

Then cT1(x) = (x− 1)2 = cT2(x).

1.3.30. Definition (Diagonalisable operator). — Let V be a finite-dimensional F-vector
space. An operator T ∈ L(V ) is diagonalisable over F if there exists an ordered basis B of
V wrt which the matrix of T, [m(T )]B , is diagonalisable.

In other words, [m(T )]B is a diagonal matrix, called the diagonal form of T.

1.3.31. Remark. — A ∈ Fn×n is diagonalisable over F if ∃P ∈ GLn(F) : P−1AP is a
diagonal matrix.

P−1[m(T )]BP = [m(T )]B′ .

Suppose that B = {v1, . . . , vn} is a basis of V s.t.

[m(T )]B =


λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn


then

T (v1) = λ1v1 + 0 · v2 + · · · + 0 · vn = λ1v1

...
T (vn) = 0 · v1 + 0 · v2 + · · · + λnvn = λnvn

thus Tj(vj) = λjvj .

1.3.32. Question. — Check if T ∈ L(R2) is diagonalisable, where

T (x, y) = (41x+ 7y,−20x+ 74y).

Solution. [m(T )]B =
(

41 7
−20 74

)
wrt standard basis.

Let B′ = {(1, 4), (7, 5)}. Then we get

[m(T )]B′ =
(

69 0
0 46

)
.

Taking P =
(

1 7
4 5

)
we get P−1[m(T )]BP = [m(T )]B′ so T is diagonalisable.

Necessary and sufficient conditions for diagonalisability. — Let V be a finite-
dimensional F-vector space with dim(V ) = n.

1.3.33. Theorem. — T ∈ L(V ) is diagonalisable iff every eigenvalue λ of T is regular.

1.3.34. Remark. — dim(Wλ) = dim(ker(T − λI)) = n − rank(T − λI) by rank-nullity
theorem.
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1.3.35. Theorem. — T ∈ L(V ) is diagonalisable iff mT (x) is a product of distinct linear
factors, i.e.,

mT (x) = (x− λ1)(x− λ2) · · · (x− λn).

1.3.36. Theorem. — Let T ∈ L(V ) have k distinct eigenvalues λ1, . . . , λk. Then the
following are equivalent:

1. T is diagonalisable.

2. V = Wλ1 ⊕ · · · ⊕Wλk
, where Wλj

= ker(T − λjI) is the eigenspace of λj .

3. The characteristic polynomial of T splits7 over F and each eigenvalue is regular.

4. The minimal polynomial of T is mT (x) = (x− λ1) · · · (x− λk).

1.3.37. Theorem (Enough eigenvalues =⇒ diagonalisable). — If T has n = dim(V )
distinct eigenvalues, then T ∈ L(V ) is diagonalisable.

The above condition is sufficient but not necessary - for example on R3 take the operator
T (x, y, z) = (6x, 6y, 7z). Then it has only two eigenvalues 6 and 7 and dim(R3) = 3 but T is
diagonalisable.

1.3.38. Example. — Let T ∈ L(R2) defined by

T (x, y) = (x+ y, 2y).

Then cT (x) = (x− 1)(x− 2) and taking B as standard ordered basis,

[m(T )]B =
(

1 1
0 2

)
is diagonalisable.

1.3.39. Question. — Check whether the following are diagonalisable:

1. T ∈ L(R2) s.t. T (x, y) = (x, y). Ans. Diagonalisable.

2. T ∈ L(R3) s.t. T (x, y, z) = (y + z, z + x, x+ y). Ans. Diagonalisable.

3. A =
(

1 1
0 1

)
. Ans. Not diagonalisable.

4. A =

1 1 1
0 1 1
0 0 1

 . Ans. Not diagonalisable.

5. A =

1 2 3
0 4 5
0 0 6

 . Ans. Diagonalisable.

6. A =

1 0 0
0 0 −1
0 1 0

 . Ans. Diagonalisable over C, but not over R.

7For example, (x2 + 1) splits over R and Q(
√

2) as (x2 + 1) = (x −
√

2)(x +
√

2).
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1.3.40. Definition (Idempotent and nilpotent operators). — T ∈ L(V ) is

1. idempotent iff T 2 = T.

2. nilpotent iff Tn = 0 for some n ∈ N.

1.3.41. Proposition. — Idempotent operators are diagonalisable but nonzero nilpotent
operators are not diagonalisable.

Proof. For idempotent operator, T 2 − T = 0 so

mT (x) = x, (x− 1) or x(x− 1)

hence diagonalisable.
For nonzero nilpotent operator, Tn = 0 so mT (x) = xm, m ⩽ n which is not a product of

distinct linear factors. Hence not diagonalisable.

1.3.42. Definition (Triangularisable). — Let V be a finite-dimensional F-vector space
and T ∈ L(V ), then T is triangularisable over F if there exists an ordered basis B of V
wrt which the matrix of T is upper or lower triangular.

1.3.43. Remark. — A ∈ Fn×n is triangularisable over F if ∃P ∈ GLn(F) : P−1AP is
upper triangular.

1.3.44. Example. — T ∈ L(R3) s.t.

T (x, y, z) = (2x+ y, 5y + 3z, 8z)

is triangularisable wrt the standard ordered basis.

1.3.45. Theorem. — The following are equivalent for T ∈ L(V ) :

1. T is triangularisable.

2. Every nonzero T -invariant subspace of V contains an eigenvector of T.

3. cT (x) splits over F.

1.3.46. Theorem. — T ∈ L(V ) is triangularisable iff mT (x) is a product of linear
polynomials over F that are not necessarily distinct.

1.3.47. Example. — T ∈ L(R3) s.t.

T (x, y, z) = (2x− y + 4z, y, 4x+ z)

is triangularisable.

1.3.48. Question. — Is T ∈ L(R4) defined by

T (x, y, z, w) = (x− y,−2y + 3z − w, 4x− 5z, x+ y − w)

is triangularisable ?

1.3.49. Definition (Simultaneously diagonalisable and triangularisable). — Let V be
a finite-dimensional F-vector space and T1, T2 ∈ L(V ) be diagonalisable (resp. triangular-
isable). Then T1 and T2 are simultaneosuly diagonalisable (resp. simultaneosuly
triangularisable) iff T1T2 = T2T1.
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1.3.50. Question. — Let T ∈ L(R3) s.t.

T (x, y, z) = (7x− y − 2z,−x+ 7y + 2z,−2x+ 2y + 10z).

Is T diagonalisable over R ? Ans. Diagonalisable.

1.3.51. Question. — Is T ∈ L(R3) defined by

T (x, y, z) = (−2x− y + z, 2x+ y − 3z,−z)

diagonalisable or triangularisable over R ? Ans. Triangularisable but not diagonalisable.

1.3.52. Question. — Are the following diagonalisable or triangularisable over R ?

1. T ∈ L(R3) s.t.
T (x, y, z) = (x+ z, 2y + z,−x+ 3z).

Ans. Not diagonalisable but triangularisable.

2. T ∈ L(R3) s.t.
T (x, y, z) = (−z, x+ z, y + z).

Ans. Not diagonalisable but triangularisable.

1.3.53. Question. — Let A ∈ R3×3. Prove that if A ̸∼ B where B is triangular over R,
then A ∼ D where D is diagonal over C. Hence conclude that

A =

1 0 0
0 0 −1
0 1 0


is not triangularisable over R but diagonalisable over C.

Solution. cT (x) = ax3 + vx2 + cx+ d ∈ R[x], which is of odd degree so at least one real root
exists. Assume

cT (x) = (x− λ1)g(x),

then as A is not similar to any triangular matrix on R, g(x) does not split over R so it has
no real roots. Thus

cT (x) = (x− λ1)(x− λ)(x− λ) = mT (x)

which is diagonalisable over C.

A =

1 0 0
0 0 −1
0 1 0


has cA(x) = (x− 1)(x2 + 1) = (x− 1)(x− i)(x+ i) which splits over C but not R as (x2 + 1)
cannot split over R. Hence A is not triangularisable over R but diagonalisable over C.

1.3.54. Question. — Let A =

0 1 0
2 −2 2
2 −3 2

 . Is A similar to a triangular matrix over R ?

Justify. Ans. Triangularisable.
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1.3.55. Question. — Are A and B simultaneosuly diagonalisable over R if

A =

3 −1 −1
1 1 −1
1 −1 1

 and B =

3 −2 −2
1 0 −2
3 −3 −1

?

Justify. Ans. Simultaneously diagonalisable.

1.3.56. Question. — Is every invertible matrix diagonalisable ? Is every diagonalisable
matrix invertible ?

Solution. Counterexample to first claim is(
1 1
0 1

)
.

Counterexample to second claim is (
1 0
0 0

)
.

1.3.57. Question. — Are A and B simultaneosuly diagonalisable over R if

A =
(

1 1
−1 1

)
and B =

(
1 2

−2 1

)
?

Justify.

1.3.58. Question. — Given an example of

1. two diagonalisable matrices A,B s.t. A+B is not diagonalisable.

2. two triangularisable matrices A,B s.t. A+B is not triangularisable.

3. two diagonalisable matrices A,B s.t. AB is not diagonalisable.

4. two triangularisable matrices A,B s.t. AB is not triangularisable.

Solution. 1.
A =

(
2 1
0 −1

)
and B =

(
−1 0
0 2

)
.

2.
A =

(
1 1
0 1

)
and B =

(
−1 0
−1 −1

)
.

3.
A =

(
1 1
1 0

)
and B =

(
0 1
1 1

)
.

4.
A =

(
0 1
0 0

)
and B =

(
1 0
0 0

)
.
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Chapter 2.

Inner product spaces and
orthogonality

2
2.1. Inner product and norm
2.1.1. Overview. — Inner products and norms are functions that let us measure distances
or equip our vector space with some distance function (metric) or topology. They are
generalisations of the Euclidean inner product (dot product) and Euclidean norm (distance),
and it only makes sense to consider vector spaces equipped with such functions over R and
C due to issues with ordering. Hence we will assume F = R or C unless otherwise stated.

It is nicer to do analysis on such a space if every Cauchy sequence in it is convergent to
some limit in that space - completeness. A complete inner product space is called a Hilbert
space whereas a complete normed space is called a Banach space. Hilbert and Banach spaces
form the core of the subject of functional analysis and the mathematics of quantum theory.

LINEAR
ALGEBRA

Inner product
space

Normed
space

FUNCTIONAL
ANALYSIS Hilbert space Banach space

completion completion

2.1.2. Euclidean norm and inner product. — On the real line R the distance of x
from 0 is measured simply by the absolute value |x|. In the R2 plane we measure distance
from origin by ∥x∥ = ∥(x1, x2)∥ =

√
x2

1 + x2
2 =

√
x · x, where x · y = x1y1 + x2y2 is the inner

(dot) product. Generalisation to R3 and the Euclidean n-space Rn is straightforward.

(x1, x2, x3)

R3
∥x∥=

√
x2

1+x2
2+x2

3=
√

x·x

2.1.3. Definition (Euclidean inner product and norm). — For any two vectors x, y ∈ Rn,
the dot product or Euclidean inner product of x = (x1, . . . , xn) and y = (y1, . . . , yn) is
defined by x · y = x1y1 + · · · + xnyn ∈ R. The Euclidean norm of x is ∥x∥ =

√
x · x ∈ R.
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2.1. Inner product and norm

2.1.4. Remark. — The Euclidean inner product is scalar-valued, hence it’s often called a
scalar product. Also note that

x · x = x2
1 + · · · + x2

n = ∥x∥2.

We want to generalise the Euclidean norm and inner product to any V over F = R or C.
Observe that the Euclidean inner product satisfies the following properties:

1. x · x ⩾ 0 ∀x ∈ Rn with equality iff x = 0 ∈ Rn.

2. ∀y ∈ Rn we have that x 7! x ·y is a linear map from Rn to R (in fact a linear functional).

3. x · y = y · x ∀x, y ∈ Rn.

This is only for Rn as an R-vector space. What about Cn as a C-vector space ? We use
the property of complex conjugation:

∀z ∈ C : zz = (ℜ(z) + iℑ(z))(ℜ(z) − iℑ(z)) = ℜ(z)2 + ℑ(z)2 = |z|2.

2.1.5. Definition. — Let z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ Cn. Then the complex
inner product and norm are, respectively,

z · w = z1w1 + · · · + znwn, ∥z∥ =
√
z · z =

√
z1z1 + · · · + znzn.

2.1.6. Remark. — The complex inner product differs from the Euclidean in that symmetry
(Remark 2.1.4, property 3.) no longer holds; instead, we have conjugate symmetry z ·w = w · z.

From this point onwards, unless otherwise stated, F = R or C.

2.1.7. Definition (Inner product). — Let V be an F-vector space. An inner product on
V is a map

⟨·, ·⟩ : V × V
(x,y)

−! F
7−!⟨x,y⟩

satisfying the following properties:

1. ⟨x+ y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ ∀x, y, z ∈ V (additivity in first component).

2. ⟨λx, y⟩ = λ ⟨x, y⟩ ∀λ ∈ F, x, y ∈ V (homogeneity or linearity in first component).

3. ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ V (conjugate symmetry).

4. ⟨x, x⟩ > 0 ∀x ∈ V (positivity).
In particular, ⟨x, x⟩ = 0 ⇐⇒ x = 0 ∈ V (definiteness).

We then say ⟨·, ·⟩ is an inner product defined on V, making it into an inner product space.

2.1.8. Remark. — Inner product is needed to define angles and distances in a vector space.
F = R =⇒ real inner product space, F = C =⇒ complex inner product space. Physicists
often define linearity in the second component instead, whereas most mathematicians define
inner products with linearity in the first component.

As a = a ∀a ∈ R, when F = R we have ⟨x, y⟩ = ⟨y, x⟩ .
If ⟨·, ·⟩ is an inner product on V, then ε ⟨·, ·⟩ is also an inner product on V for every

ε > 0, ε ∈ R.
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2.1. Inner product and norm

If F = R then ⟨·, ·⟩ : V × V ! R is a bilinear map (linear in both components):

⟨x+ z, y⟩ = ⟨x, y⟩ + ⟨z, y⟩
⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ .

If F = C then ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ , but ⟨x, λy⟩ = λ ⟨x, y⟩ .

2.1.9. Example. — Let V = Fn (F = R or C) and x, y ∈ Fn : x = (x1, · · · , xn), y =
(y1, · · · , yn). Then

⟨x, y⟩ = x1y1 + · · · + xnyn (2.1.1)
is the usual, standard or Euclidean inner product on Fn. For λ1, . . . , λn > 0, λ1, . . . , λn ∈ F,

⟨x, y⟩ = λ1x1y1 + · · · + λnxnyn (2.1.2)

is also an inner product on Fn.

2.1.10. Example. — Let V = C[a, b] be the R-vector space of all continuous functions
f ∈ R[a,b] (−∞ < a < b < ∞). Then an inner product on V is given by

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx. (2.1.3)

In particular, if V = C[−1, 1] then

⟨f, g⟩ =
∫ 1

−1
f(x)g(x)dx (2.1.4)

and if V = C[0, 1] then

⟨f, g⟩ =
∫ 1

0
f(x)g(x)dx. (2.1.5)

If f ∈ C[a,b] instead, then

⟨f, g⟩ =
∫ b

a

f(x)g(x)dx. (2.1.6)

2.1.11. Example. — Let V = Fn×n (the space of square matrices of order n over F). Let
A = (aij)n×n ∈ Fn×n. Then the adjoint of A is defined as the conjugate transpose of A,

A∗ = (aij)
T

n×n = A
T = AT = (aji)n×n. (2.1.7)

If
A =

(
1 + 2i 2 + 3i
3 + 4i 4 + 5i

)
,

then
A =

(
1 − 2i 2 − 3i
3 − 4i 4 − 5i

)
so that

A∗ =
(

1 − 2i 3 − 4i
2 − 3i 4 − 5i

)
.

We can define an inner product on Fn×n by

⟨A,B⟩ = tr(B∗A). (2.1.8)
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2.1.12. Example. — Let V = P(R). Then

⟨f, g⟩1 = f(0)g(0) +
∫ 1

−1
f ′(x)g′(x)dx (2.1.9)

and
⟨f, g⟩2 =

∫ ∞

0
f(x)g(x)e−xdx (2.1.10)

are two possible inner products on P(R).

2.1.13. Question. — Does there exist a non-Euclidean inner product on R2 ?

2.1.14. Example. — For any x, y ∈ R2, we define

⟨x, y⟩ = ax1y1 + c(x1y2 + x2y1) + bx2y2 =
(
x1
x2

)T (
a c
c b

) (
y1
y2

)
= xTAy (2.1.11)

where a, b, c ∈ R are arbitrary. Then ⟨x, y⟩ = xTAy is an inner product on R2 iff a > 0 and
ab− c2 > 0, i.e. det(A) > 0. For example, ⟨x, y⟩ = x1y1 + 2(x1y2 + x2y1) + 5x2y2.

2.1.15. Theorem (Basic properties of inner product). — Let V be an F-inner product
space. Then the following hold:

1. For all y ∈ V (fixed), there is a linear functional V ! F defined by x 7! ⟨x, y⟩ .

2. ⟨x, 0⟩ = ⟨0, x⟩ = 0 ∀x ∈ V.

3. ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ ∀x, y, z ∈ V.

4. ⟨x, λy⟩ = λ ⟨x, y⟩ ∀λ ∈ F, x, y ∈ V.

Proof. 1. Let λ ∈ F, a, b ∈ V. Then

λa+ b 7! ⟨λa+ b, y⟩ = ⟨λa, y⟩ + ⟨b, y⟩ = λ ⟨a, y⟩ + ⟨b, y⟩ .

2. Observe that
⟨0, x⟩ = ⟨x, x⟩ + ⟨−x, x⟩ = ⟨x, x⟩ − ⟨x, x⟩ = 0.

Hence, ⟨x, 0⟩ = ⟨0, x⟩ = 0 = 0.

3. ⟨x, y + z⟩ = ⟨y + z, x⟩ = ⟨y, x⟩ + ⟨z, x⟩ = ⟨y, x⟩ + ⟨z, x⟩ = ⟨x, y⟩ + ⟨x, z⟩ .

4. ⟨x, λy⟩ = ⟨λy, x⟩ = λ⟨y, x⟩ = λ ⟨x, y⟩ .

2.1.16. Definition (Norm). — Let V be an F-inner product space. For any x ∈ V the
norm of x is defined by

∥x∥ =
√

⟨x, x⟩ = (⟨x, x⟩)
1
2 . (2.1.12)

In other words, ∥x∥2 = ⟨x, x⟩ .

2.1.17. Example. — Let V = Fn. Then

∀x ∈ Fn : ∥x∥ =
√

|x1|2 + · · · + |xn|2.
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2.1.18. Example. — Let V = C[−1, 1]. Then

∀f ∈ C[−1, 1] : ∥f∥ =
√

⟨f, f⟩ =

√∫ 1

−1
f2(x)dx.

2.1.19. Theorem (Basic properties of norm). — Let V be an F-inner product space, then
for any x ∈ V, λ ∈ F we have the following:

1. ∥x∥ = 0 ⇐⇒ x = 0.

2. ∥λx∥ = |λ|∥x∥.

Proof. 1. ∥x∥ = 0 ⇐⇒
√

⟨x, x⟩ = 0 ⇐⇒ x = 0.

2. ∥λx∥ =
√

⟨λx, λx⟩ =
√
λλ

√
⟨x, x⟩ =

√
|λ|2

√
⟨x, x⟩ = |λ|∥x∥.

2.1.20. Theorem. — Let V be an F-inner product space. Then for any x, y ∈ V we have
the following inequalities:

1. | ⟨x, y⟩ | ⩽ ∥x∥∥y∥. (Cauchy-Schwarz inequality)
Equality holds ⇐⇒ x and y are linearly dependent, i.e. x = λy for some λ ∈ F.

2. ∥x+ y∥ ⩽ ∥x∥ + ∥y∥. (Triangle inequality)

3. ∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2. (Parallelogram law)

Proof. 1. If y = 0 then this is trivial. So let y ̸= 0. Then ⟨y, y⟩ ≠ 0. Now for any λ ∈ F,

0 ⩽ ∥x− λy∥2

= ⟨x− λy, x− λy⟩
= ⟨x, x− λy⟩ − λ ⟨y, x− λy⟩
= ⟨x, x⟩ − λ ⟨x, y⟩ − λ ⟨y, x⟩ + λλ ⟨y, y⟩ .

Setting λ = ⟨x, y⟩
⟨y, y⟩

, we get

0 ⩽ ∥x∥2 − ⟨x, y⟩
∥y∥2 . (2.1.13)

Equality holds in (2.1.13) iff x = λy for some λ ∈ F.

2.

∥x+ y∥2 = ⟨x+ y, x+ y⟩
= ⟨x, x⟩ + ⟨x, y⟩ + ⟨y, x⟩ + ⟨y, y⟩

= ∥x∥2 + ⟨x, y⟩ + ⟨x, y⟩ + ∥y∥2

= ∥x∥2 + 2ℜ (⟨x, y⟩) + ∥y∥2

= ∥x∥2 + 2 ⟨x, y⟩ + ∥y∥2

⩽ ∥x∥2 + 2∥x∥∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2.
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3.

∥x+ y∥2 + ∥x− y∥2 = ⟨x+ y, x+ y⟩ + ⟨x− y, x− y⟩
= 2 ⟨x, x⟩ + 2 ⟨y, y⟩
= 2∥x∥2 + 2∥y∥2.

2.1.21. Example. — If V = R2 then ⟨x, y⟩ = ∥x∥∥y∥ cos(θ) and

| ⟨x, y⟩ | = ∥x∥∥y∥ cos(θ)
⩽ ∥x∥∥y∥.

2.1.22. Theorem. — Every inner product space is a metric space.

Proof. Let V be an inner product space over F. Then d : V × V ! R defined by

d(x, y) = ∥x− y∥ ∀x, y ∈ V

defines a metric space (V, d).

2.1.23. Remark. — Every finite dimensional inner product space is a complete metric
space, hence a complete inner product space. Such a complete inner product space is called
a Hilbert space.

2.2. Orthogonality and orthonormality
2.2.1. Definition (Orthogonal). — Let V be an F-inner product space. Then two vectors
x, y ∈ V, x ̸= y are said to be orthogonal if ⟨x, y⟩ = 0.

A nonempty subset S ⊆ V is orthogonal if ⟨x, y⟩ = 0 ∀x, y ∈ S, x ̸= y.

2.2.2. Definition (Orthonormal). — Let V be an F-inner product space. A nonempty
subset S ⊆ V is orthonormal if S is orthogonal and ∥x∥ = 1 ∀x ∈ S.

2.2.3. Remark. — If {x1, . . . , xn} is an orthonormal set of vectors in V, then

⟨xj , xk⟩ =
{

1 if j = k

0 if j ̸= k
∵ ⟨xk, xk⟩ = ∥xk∥2. (2.2.1)

2.2.4. Example. — Let V = Fn, then the standard basis {e1, . . . , en} is a natural example
of an orthonormal set.

2.2.5. Example. —{(
1√
3
,

1√
3
,

1√
3

)
,

(
− 1√

2
,

1√
2
, 0

)
,

(
1√
6
,

1√
6
,− 2√

6

)}
is an orthonormal set of vectors in R3.
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2.2.6. Example. — Consider Fn×n = Rn×n or Cn×n. Take the elementary matrices
{Eij : i, j = 1, . . . , n}, where

Eij =



0
. . . 0

1

0 . . .
0


where the ith row, jth column is 1 and every other entry is 0. With ⟨A,B⟩ = tr(B∗A), we
get that {Eij : i, j = 1, . . . , n} is an orthonormal set over Fn×n.

2.2.7. Example. — Let V = R2. Let x = (x1, x2), y = (y1, y2) ∈ R2. Then

⟨x, y⟩ = 0 ⇐⇒ x1y1 + x2y2 = 0.

If we take a straight line from origin through x then this straight line is perpendicular to
the straight line passing through y.

2.2.8. Theorem. — In an F-inner product space V, orthogonal subsets1 of nonzero elements
of V are linearly independent.

Proof. Let S ⊆ V be an orthogonal subset of nonzero vectors in V. Let x1, . . . , xn ∈ S such
that

λ1x1 + · · · + λnxn = 0 (2.2.2)

for some λ1, . . . , λn ∈ F. Then for 1 ⩽ i ⩽ n,

λi∥xi∥2 = λi ⟨xi, xi⟩
= λ1 ⟨x1, xi⟩ + · · · + λi ⟨xi, xi⟩ + · · · + λn ⟨xn, xi⟩
= ⟨λ1x1 + · · · + λnxn, xi⟩
= ⟨0, xi⟩ = 0.

As ∥xi∥ = 1, we have λi = 0 for 1 ⩽ i ⩽ n. Hence S is linearly independent.

2.2.9. Theorem (Bessel’s inequality). — Let V be an F-inner product space. Let
{e1, . . . , en} be an orthonormal subset of V. Then for all x ∈ V, we have

| ⟨x, e1⟩ |2 + · · · + | ⟨x, en⟩ |2 ⩽ ∥x∥2. (2.2.3)

Proof. Let y = x− (⟨x, e1⟩ e1 + · · · + ⟨x, en⟩ en) . Then

∥y∥2 = ⟨y, y⟩ = ∥x∥2 −
(
| ⟨x, e1⟩ |2 + · · · + | ⟨x, en⟩ |2

)
⩾ 0. (2.2.4)

Hence, | ⟨x, e1⟩ |2 + · · · + | ⟨x, en⟩ |2 ⩽ ∥x∥2.

2.2.10. Definition (Orthonormal basis). — Let V be an F-inner product space. A subset
B of V is called an orthonormal basis of V if B is a basis for V and an orthonormal set.

1If V is infinite dimensional then we consider all possible finite subsets of S, in that case all finite subsets of
S are linearly independent.
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2.2. Orthogonality and orthonormality

2.2.11. Example. — The standard basis {e1, . . . , en} of Fn over F is an orthonormal
basis.

2.2.12. Example. — The standard basis {Eij : i, j = 1, . . . , n} of Fn×n over F is an
orthonormal basis.

2.2.13. Example. —
{( 1

2 ,
1
2 ,

1
2 ,

1
2
)
,
( 1

2 ,
1
2 ,−

1
2 ,−

1
2
)
,
( 1

2 ,−
1
2 ,−

1
2 ,

1
2
)
,
(
− 1

2 ,
1
2 ,−

1
2 ,

1
2
)}

is an
orthonormal basis of F4 over F.

2.2.14. Remark. — V
space

 ! B
basis

For a general basis B = {x1, . . . , xn}, verifying linear

independence is not easy. Showing λk = 0 for all λk just from
∑n

k=1 λkxk = 0 is nontrivial
in general.

For an orthonormal basis, the implication
∑n

k=1 λkxk = v =⇒ ⟨v, xk⟩ = λk is immediate.
So

∑n
k=1 λkxk = 0 =⇒ λk = ⟨0, xk⟩ = 0. This is the advantage of orthonormal bases over

usual bases.

2.2.15. Theorem. — Let {e1, . . . , en} be an orthonormal basis of an F-inner product space
V. If x, y ∈ V then

1. x = ⟨x, e1⟩ e1 + · · · + ⟨xn, en⟩ en.

2. ∥x∥2 = |⟨x, e1⟩|2 + · · · + |⟨x, en⟩|2 . (Bessel’s identity)

3. ⟨x, y⟩ = ⟨x, e1⟩ ⟨e1, y⟩ + · · · + ⟨x, en⟩ ⟨en, y⟩ (Parseval’s identity)

= ⟨x, e1⟩ ⟨y, e1⟩ + · · · + ⟨x, en⟩ ⟨y, en⟩.

Proof. 1. Let x ∈ V : x = λ1e1 + · · · + λnen =⇒ ⟨x, ei⟩ = λi.

So, x = ⟨x, e1⟩ e1 + · · · + ⟨xn, en⟩ en.

2. For any x ∈ V ,

∥x∥2 = ⟨x, x⟩ = ⟨x, ⟨x, e1⟩ e1 + · · · + ⟨xn, en⟩ en⟩
= ⟨x, ⟨x, e1⟩ e1⟩ + · · · + ⟨x, ⟨x, en⟩ en⟩

= ⟨x, e1⟩ ⟨x, e1⟩ + · · · + ⟨x, en⟩ ⟨x, en⟩

= |⟨x, e1⟩|2 + · · · + |⟨x, en⟩|2 .

3. Let x, y ∈ V. Then

⟨x, y⟩ = ⟨x, ⟨y, e1⟩ e1 + · · · + ⟨y, en⟩ en⟩
= ⟨x, ⟨y, e1⟩ e1⟩ + · · · + ⟨x, ⟨y, en⟩ en⟩

= ⟨y, e1⟩ ⟨x, e1⟩ + · · · + ⟨y, en⟩ ⟨x, en⟩

= ⟨x, e1⟩ ⟨y, e1⟩ + · · · + ⟨x, en⟩ ⟨y, en⟩
= ⟨x, e1⟩ ⟨e1, y⟩ + · · · + ⟨x, en⟩ ⟨en, y⟩ .
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2.2. Orthogonality and orthonormality

2.2.16. Theorem. — Every finite dimensional inner product space has an orthonormal
basis.

Proof. Construction by Gram-Schmidt orthonormalisation (Theorem 2.2.17).

2.2.17. Theorem (Gram-Schmidt orthonormalisation process). — Let V be an F-inner
product space and {v1, . . . , vm} be a linearly independent set of vectors in V. Let f1 = v1. For
2 ⩽ k ⩽ m, define fk inductively by

fk = vk − ⟨vk, f1⟩
∥f1∥2 f1 − · · · − ⟨vk, fk−1⟩

∥fk−1∥2 fk−1. (2.2.5)

For 1 ⩽ k ⩽ m, let ek = fk

∥fk∥
. Then {e1, . . . , em} is an orthonormal set of vectors in V s.t.

span(v1, . . . , vk) = span(e1, . . . , ek) for 1 ⩽ k ⩽ m.

2.2.18. Example. — Consider the basis B = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} of R3.
Let f1 = (0, 1, 1) =⇒ ∥f1∥ =

√
2. Now,

f2 = (1, 0, 1) − ⟨(1, 0, 1), (0, 1, 1)⟩
2 (0, 1, 1)

= (1, 0, 1) −
(

0, 1
2 ,

1
2

)
=

(
1,−1

2 ,
1
2

)
=⇒ ∥f2∥ =

√
3
2 .

f3 = (1, 1, 0) − ⟨(1, 1, 0), (0, 1, 1)⟩
2 (0, 1, 1) −

〈
(1, 1, 0),

(
1,− 1

2 ,
1
2
)〉

3
2

(
1,−1

2 ,
1
2

)
= (1, 1, 0) −

(
0, 1

2 ,
1
2

)
−

(
1
3 ,−

1
6 ,

1
6

)
=

(
2
3 ,

2
3 ,−

2
3

)
=⇒ ∥f3∥ = 2√

3
.

Then we have
e1 = (0, 1, 1)√

2
, e2 =

(
1,− 1

2 ,
1
2
)√

3
2

, e3 =
( 2

3 ,
2
3 ,−

2
3
)

2√
3

.

After simplifications, e1 = 1√
2 (0, 1, 1) , e2 = 1√

6 (2,−1, 1) , e3 = 1√
3 (1, 1,−1) .

Hence,
{

1√
2

(0, 1, 1) , 1√
6

(2,−1, 1) , 1√
3

(1, 1,−1)
}

is an orthonormal basis of R3.

2.2.19. Example. — Use Gram-Schmidt orthonormalisation process to construct an
orthonormal basis from the following bases of R3 :

1. {(1, 1, 1), (0, 1, 1), (0, 0, 1)} Ans.
{

1√
3 (1, 1, 1) , 1√

6 (−2, 1, 1) , 1√
2 (0,−1, 1)

}
.

2. {(2, 1, 2), (4, 1, 0), (3, 1,−1)} Ans.
{

1
3 (2, 1, 2) , 1√

2 (1, 0,−1) , 1
3

√
2 (−1, 4, 1)

}
.
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2.2. Orthogonality and orthonormality

2.2.20. Example. — Take the polynomial inner product space

V = P2(R) = {f ∈ R[x] : deg f ⩽ 2}.

For all f, g ∈ P2(R),

⟨f, g⟩ =
∫ 1

−1
f(x)g(x)dx.

Then {1, x, x2} is a basis of V. Taking f1 = 1, we then have ∥f1∥ =
√∫ 1

−1 dx =
√

2, so

f2 = x− ⟨x, f1⟩
∥f1∥2 f1 = x− 1

2

∫ 1

−1
xdx = x,

∥f2∥ =

√∫ 1

−1
x2dx =

√
2
3 .

f3 = x2 −
〈
x2, f1

〉
∥f1∥2 f1 −

〈
x2, f2

〉
∥f2∥2 f2

= x2 − 1
2

∫ 1

−1
x2dx− 3

2x
∫ 1

−1
x3dx

= x2 − 1
3 ,

∥f3∥ =

√∫ 1

−1

(
x5 − 2

3x
2 + 1

9

)
dx =

√
8
45 .

Hence,
{

1√
2 ,

√
3
2x,

√
45
8

(
x2 − 1

3
)}

is an orthonormal basis of V.

2.2.21. Example. — Let V = P(R). This is an infinite dimensional vector space. A basis
for V is given by {1, x, x2, . . . , xn, . . . }, and we want to find an orthononormal basis of the
form

{α0P0(x), α2P2(x), . . . , αnPn(x), . . . },

where Pn(1) = 1 and αn = ∥Pn(x)∥−1 =
(∫ 1

−1(Pn(x))2dx
)− 1

2 for all n. Let Pn(x) = fn(x)
fn(1) .

Then f0 = 1 =⇒ ∥f0∥2 = 2, P0 = 1,

f1 = x− 1
2

∫ 1

−1
xdx = x =⇒ ∥f1∥2 = 2

3 , P1 = x,

f2 = x2 − 1
2

∫ 1

−1
x2dx− 3

2x
∫ 1

−1
x3dx

= x2 − 1
3 =⇒ ∥f2∥2 = 8

45 ,

P2(x) = f2(x)
f2(1) = 3

2

(
x2 − 1

3

)
= 1

2(3x2 − 1).

We get αn = ∥Pn(x)∥−1 =
(∫ 1

−1(Pn(x))2dx
)− 1

2 =
(√

2
2n+1

)−1
, and the polynomials

P0(x) = 1, P1(x) = x, P2(x) = 1
2 (3x2 − 1), . . . are exactly the Legendre polynomials.
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2.3. Inner product space isomorphisms

2.2.22. Theorem (Extension theorem). — Let V be an F-inner product space of dimension
n. If {x1, . . . , xk} is an orthonormal subset of V then there exist xk+1, . . . , xn ∈ V s.t.
{x1, . . . , xn} is an orthonormal basis of V.

2.3. Inner product space isomorphisms
2.3.1. Definition. — Let V and W be two F-inner product spaces. Then a mapping
f : V !W is an inner product space isomorphism if it is a vector space isomorphism
that preserves inner products, i.e.

⟨f(x), f(y)⟩ = ⟨x, y⟩ ∀x, y ∈ V.

2.3.2. Theorem. — Let V and W be two F-inner product spaces. Let {e1, . . . , en} be
an orthonormal basis of V. Then f : V ! W is an inner product space isomorphism iff
{f(e1), . . . , f(en)} is an orthonormal basis of W.

2.3.3. Theorem. — Let V be a finite dimensional F-inner product space and T : V ! V be
a linear operator. Then T has an upper triangular matrix with respect to some orthonormal
basis of V iff the minimal polynomial of T is of the form

mT (x) = (x− λ1) · · · (x− λm), λ1, . . . , λm ∈ F.

2.3.4. Theorem (Schur’s theorem). — Every linear operator on a finite-dimensional
complex inner product space has an upper-triangular matrix with respect to some orthonormal
basis.

2.3.5. Theorem (Riesz representation theorem). — Let V be a finite-dimensional F-inner
product space and ϕ : V ! F be a linear functional. Then there exists a unique vector v ∈ V
s.t.

ϕ(u) = ⟨u, v⟩ ∀u ∈ V.

2.3.6. Example. — Let V = C[−1, 1], which is an infinite dimensional real inner product
space. Then

⟨f, g⟩ =
∫ 1

−1
f(x)g(x)dx.

We define ϕ : C[−1, 1]! R by ϕ(f) = f(0). Then there is no g ∈ C[−1, 1] : ϕ(f) = ⟨f, g⟩ .
Hence, the Riesz representation theorem (Theorem 2.3.5) may fail on an infinite-dimensional
inner product space.

2.4. Orthogonal complement
Non-uniqueness of complementary subspaces. — In an F-vector space V, every
subspace has a complement. A complement always exists, but is not necessarily unique.
Consider the real plane V = R2. Any line W passing through the origin in R2 forms a
subspace. Any line V passing through the origin and not parallel to W then is a complement
of W.

However, we can define a specific kind of complementary subspace in an inner product
space (or, more generally, in any space equipped with a bilinear form) that both exists and
is unique.
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2.4. Orthogonal complement

2.4.1. Definition (Orthogonal complement). — The orthogonal complement W⊥ of a
subset W of an F -inner product space V is defined by

W⊥ = {v ∈ V : ⟨u, v⟩ = 0 ∀u ∈ W} . (2.4.1)

2.4.2. Example. — In V = R2 we have the following three subspaces:
X = {(x, 0) : x ∈ R}, Y = {(0, y) : y ∈ R} and D = {(x, x) : x ∈ R}. Then

R2 = X ⊕ Y = X ⊕D = Y ⊕D

so all three are complementary subspaces. But the orthogonal complement of any one
subspace is unique: for example, R2 = X ⊕X⊥, X⊥ = Y.

2.4.3. Example. — In V = R3 consider the subset W = {(2, 3, 5)}. Then its orthogonal
complement is the following plane passing through origin,

W⊥ = {(x, y, z) ∈ R3 : 2x+ 3y + 5z = 0}.

The orthogonal complement of U = W⊥ is then U⊥ = {(2t, 3t, 5t) : t ∈ R}.

2.4.4. Example. — In V = R5 consider W = {(a, b, 0, 0, 0) : a, b ∈ R}.
Then W⊥ = {(0, 0, x, y, z) : x, y, z ∈ R}.

2.4.5. Example. — C[−1, 1] = W ⊕W⊥, where

W = {f(x) : f(−x) = f(x)}, W⊥ = {f(x) : f(−x) = −f(x)}.

2.4.6. Example. — Rn×n = S ⊕ S⊥, where

S = {A ∈ Rn×n : A = AT }, S⊥ = {A ∈ Rn×n : A = −AT }.

2.4.7. Theorem (Properties of orthogonal complement). — Let V be an F-inner product
space.

1. If W ⊆ V then W⊥ is a subspace of V.

2. {0}⊥ = V, V ⊥ = {0}.

3. If W ⊆ V then W ∩W⊥ ⊆ {0}.

4. If dim(V ) < ∞ and W1,W2 are subspaces of V, then
a) W1 ⊆ W2 =⇒ W⊥

2 ⊆ W⊥
1 .

b) (W1 +W2)⊥ = W⊥
1 ∩W⊥

2 .

c) (W1 ∩W2)⊥ = W⊥
1 +W⊥

2 .

Proof. 1. w ∈ W =⇒ ⟨w, 0⟩ = 0 =⇒ 0 ∈ W⊥. Also,

x, y ∈ W⊥, w ∈ W,λ ∈ F =⇒ ⟨w, x+ λy⟩
= ⟨w, x⟩ + λ ⟨x, y⟩
= 0 + 0 = 0 =⇒ x+ λy ∈ W⊥.
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2.4. Orthogonal complement

2. Let v ∈ V =⇒ ⟨0, v⟩ = 0 =⇒ v ∈ {0}⊥. So, V ⊆ {0}⊥, but {0}⊥ ⊆ V as {0} ⊆ V.
Hence, {0}⊥ = V.

Similarly, let v ∈ V ⊥ =⇒ ⟨v, v⟩ = 0 =⇒ v = 0. Hence, V ⊥ = {0}.

3. Let w ∈ W ∩W⊥ =⇒ ⟨w,w⟩ = 0 =⇒ w = 0 =⇒ w ∈ {0} =⇒ W ∩W⊥ ⊆ {0}.

4. a) Let w ∈ W⊥
2 =⇒ ⟨u,w⟩ = 0 ∀u ∈ W2. As W1 ⊆ W2, this implies that

⟨u,w⟩ = 0 ∀u ∈ W1 =⇒ w ∈ W⊥
1 . Hence W⊥

2 ⊆ W1.

b) As W⊥
1 and W⊥

2 are subspaces of V, 0 ∈ W⊥
1 ∩W⊥

2 .

Let v ∈ (W1 +W2)⊥ =⇒ ⟨w1 + w2, v⟩ = 0 ∀w1 ∈ W1, w2 ∈ W2.

Then, setting w1 = 0 we get ⟨w2, v⟩ = 0 =⇒ v ∈ W⊥
2 and setting w2 = 0 we get

⟨w1, v⟩ = 0 =⇒ v ∈ W1 ⊥ . So (W1 +W2)⊥ ⊆ W⊥
1 ∩W⊥

2 .

Let v ∈ W⊥
1 ∩W⊥

2 =⇒ ⟨w1, v⟩ = ⟨w2, v⟩ = 0 ∀w1 ∈ W1, w2 ∈ W2. Thus,

⟨w1 + w2, v⟩ = ⟨w1, v⟩ + ⟨w2, v⟩ = 0 + 0 = 0 ∀w1 ∈ W1, w2 ∈ W2.

Hence, v ∈ (W1 +W2)⊥. So (W1 +W2)⊥ = W⊥
1 ∩W⊥

2 .

c) In a finite dimensional space (W⊥)⊥ = W. (cf. Theorem 2.4.10) So,

(W1 ∩W2)⊥

=
(
(W⊥

1 )⊥ ∩ (W⊥
2 )⊥)⊥

=
(
(W⊥

1 +W⊥
2 )⊥)⊥

= W⊥
1 +W⊥

2 .

2.4.8. Theorem. — Let V be an F-inner product space and W be a finite dimensional
subspace of V. Then V = W ⊕W⊥.

Proof. Let v ∈ V. As W is a finite dimensional subspace of V, there exists an orthonormal
basis, say, {e1, . . . , em} of W. Also, ⟨v − ⟨v, e1⟩ e1 − · · · − ⟨v, em⟩ em, ek⟩ = ⟨v, ek⟩−⟨v, ek⟩ = 0
for k = 1, . . . ,m.

Then

v = ⟨v, e1⟩ e1 + · · · + ⟨v, em⟩ em ∈ W

+ v − ⟨v, e1⟩ e1 − · · · − ⟨v, em⟩ em ∈ W⊥.

Thus V = W +W⊥. From Theorem 2.4.7 (3.), we know that W ∩W⊥ ⊆ {0}. But as W
and W⊥ are subspaces of V, {0} ⊆ W ∩W⊥.

Hence, V = W +W⊥, W ∩W⊥ = {0} =⇒ V = W ⊕W⊥.

2.4.9. Example. — Let W = {f ∈ C[−1, 1] : f(0) = 0}. Then C[−1, 1] ̸= W ⊕W⊥ as W
is infinite-dimensional.

Indeed, here W⊥ = {0}.
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2.4. Orthogonal complement

2.4.10. Theorem. — Let V be an F-inner product space. Let V be finite dimensional and
W be a subspace of V. Then

dim(W⊥) = dim(V ) − dim(W ), (W⊥)⊥ = W.

Proof. As V = W ⊕W⊥, we have

dimV = dimW + dimW⊥ =⇒ dimW⊥ = dimV − dimW.

Further, dim (W⊥)⊥ = dimV − dimW⊥ = dimW.

Alternative proof. Let x ∈ W, then ⟨x, y⟩ = 0 ∀y ∈ W⊥ =⇒ x ∈ (W⊥)⊥. So W ⊆ (W⊥)⊥.
Let v ∈ (W⊥)⊥, then v = u+ w, u ∈ W,w ∈ W⊥. We have v − u = w ∈ W⊥.
Now, u ∈ W ⊆ (W⊥)⊥ and v ∈ (W⊥)⊥ so v − u ∈ (W⊥)⊥. So v − u ∈ W⊥ ∩ (W⊥)⊥.

Then by Theorem 2.4.7 (3.), we have v − u = 0 =⇒ v = u ∈ W. So (W⊥)⊥ ⊆ W.
Hence, W = (W⊥)⊥.

2.4.11. Corollary. — If W is a finite dimensional subspace of V, then

W⊥ = {0} ⇐⇒ W = V.

Proof. W = (W⊥)⊥ = {0}⊥ = V.

Projection operator. — Let V be an F-vector space that is the direct sum of two
subspaces W1 and W2,

V = W1 ⊕W2.

Then every vector v ∈ V can be uniquely written as a sum v = w1 +w2, where w1 ∈ W1, w2 ∈
W2. We think of w1 as the projection of v on W1 along W2.

2.4.12. Definition (Projection operator). — The projection operator on W1 along W2
is the linear operator P on V defined by

P (v) = w1 ∀v = w1 + w2 ∈ V = W1 ⊕W2. (2.4.2)

2.4.13. Theorem. — A linear operator P : V ! V is a projection iff P is an idempotent
operator on V, i.e. P 2 = P.

Proof. Let P : V ! V be a projection operator on a subspace W and let v ∈ V. Then
P 2(v) = P (v) as P (v) ∈ W and P (w) = w ∀w ∈ W.

Now let P : V ! V be a linear operator such that P 2 = P. Let v ∈ V, then

v = P (v)︸ ︷︷ ︸
∈im(P )

+ (v − P (v))︸ ︷︷ ︸
∈ker(P )

.

Thus, V = im(P ) ⊕ ker(P ). By definition, P (V ) = im(P ). Also, for any w ∈ im(P ) we have
P (w) = P (P (v)) for some v ∈ V.

But P 2 = P, so w = P (w) = P (v). Hence, P is a projection operator on im(P ).

2.4.14. Remark. — If V = W1 ⊕W2 and P : V ! V is the projection on W1 along W2,
then im(P ) = W1 and ker(P ) = W2.
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2.4. Orthogonal complement

2.4.15. Corollary. — If V is a finite dimensional F-vector space and P1, P2 are two
projection operators on V, then

im(P1) = im(P2) ⇐⇒ P1P2 = P2 & P2P1 = P1.

2.4.16. Question. — Is it possible to have operators P1, P2 : V ! V with ker(P1) =
ker(P2) and im(P1) ̸= im(P2) ? Justify. Is the converse true ?

2.4.17. Question. — Is it possible to have projection operators P1, P2 s.t. P1P2 = 0 but
P2P1 ̸= 0 ?

2.4.18. Question. — Let U be the subspace of R3 defined by U = {(x, x, 0) : x ∈ R}.
Find a subspace W of R3 s.t. R3 = U ⊕W. Is W unique ? Justify.

Find a projection P1 : R3 ! R3 s.t. im(P1) = {0} and ker(P1) = W. Find also a
projection P2 : R3 ! R3 s.t. im(P2) = W and ker(P2) = W.

2.4.19. Question. — Let V be an F-vector space and P : V ! V a projection operator.
If f(x) ∈ F[x] then show that f(P ) = aI + bP for some a, b ∈ F. What are a, b in terms of
coefficients of f(x) ?

2.4.20. Question. — Let V = W1 ⊕ W2. Show that a linear operator P : V ! V is a
projection operator iff I − P is a projection operator.

Further, show that if P is the projection on W1 along W2 then I − P is the projection on
W2 along W1.

2.4.21. Question. — If T is a linear operator on V s.t. T 2(I − T ) = T (I − T )2 then show
that T is a projection operator on V.

2.4.22. Question. — Let P1, P2 be two projection operators on V and P1P2 = P2P1.
Then show that P1 + P2 − P1P2 is a projection on V.

If char(F) ̸= 2 then show that P1 +P2 is a projection operator on V iff P1P2 = P2P1 = 0.

Orthogonal projection. — We know V = W ⊕W⊥ for any finite dimensional subspace
W of V. For example,

R2 = X ⊕ Y = D ⊕D⊥,

X = {(x, 0) : x ∈ R}, X⊥ = Y = {(0, y) : y ∈ R},
D = {(x, x) : x ∈ R}, D⊥ = {(−x, x) : x ∈ R}.

x

y

•v
PD(v)

PD⊥(v)

D

D⊥
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2.4. Orthogonal complement

2.4.23. Definition (Orthogonal projection). — Let W be a finite dimensional subspace of
V. The orthogonal projection of V onto W is the linear operator PW : V ! V s.t.

PW (v) = u, ∀v = u+ w ∈ V = W ⊕W⊥.

2.4.24. Theorem (Properties of orthogonal projection). — Suppose W is a finite dimen-
sional subspace of V. Then

1. PW ∈ L(V ) (linear operator on V ).

2. PW (u) = u ∀u ∈ W.

3. PW (w) = 0 ∀w ∈ W⊥.

4. im(PW ) = W, ker(PW ) = W⊥.

5. v − PW (v) ∈ W⊥ ∀v ∈ V.

6. P 2
W = PW .

7. ∥PW (v)∥ ⩽ ∥v∥ ∀v ∈ V.

8. If {e1, . . . , em} is an orthonormal basis of W and v ∈ V then

PW (v) = ⟨v, e1⟩ e1 + · · · + ⟨v, em⟩ em

Minimisation problem. — The following problem often arises, the remarkable simplicity
of the solution to which has led to many important applications of inner product spaces
outside of pure maths:

Given a subspace W of V and a point v ∈ V , find a point u ∈ U such that ∥v − u∥ is
as small as possible. The next result shows that u = PW (v) is the unique solution of this
minimization problem.

2.4.25. Theorem. — Let V be an F-inner product space. Let W be a finite dimensional
subspace of V and v ∈ V. Then

∥v − PW (v)∥ ⩽ ∥v − w∥ ∀w ∈ W (2.4.3)

with equality iff PW (v) = w.

Proof.

∥v − PW (v)∥2

⩽ ∥v − PW (v)∥2 + ∥PW (v) − w∥2

= ∥v − PW (v) + PW (v) − w∥2 (Pythagoras theorem)
= ∥v − w∥2.

Equality holds iff ∥PW (v) − w∥ = 0 ⇐⇒ w = PW (v).
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2.5. Self-adjoint linear operators

2.5. Self-adjoint linear operators
2.5.1. Definition (Adjoint). — Let V and W be two finite dimensional F-inner product
spaces. Let T : V ! W be a linear transformation. The adjoint of T is the function
T ∗ : W ! V s.t.

⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ ∀v ∈ V,w ∈ W. (2.5.1)

2.5.2. Remark. — To see why this makes sense, suppose T ∈ L(V,W ) and fix w ∈ W.
Consider the linear functional

v 7! ⟨T (v), w⟩

on V, then this linear functional depends on T and w. By Riesz representation theorem
(Theorem 2.3.5) there exists a unique vector in V s.t. this linear functional is given by taking
the inner product with it. We call this unique vector T ∗(w), in other words T ∗(w) is the
unique vector in V s.t.

⟨T (v), w⟩ = ⟨v, T ∗(w)⟩ ∀v ∈ V.

In the equation above, the inner product on the left takes place in W and the inner
product on the right takes place in V, but we use the same notation for both inner products.

2.5.3. Proposition (Adjoint of a linear map is a linear map). —

T ∈ L(V,W ) =⇒ T ∗ ∈ L(W,V ).

Proof.

⟨T (v), w1 + w2⟩ = ⟨T (v), w1⟩ + ⟨T (v), w2⟩
= ⟨v, T ∗(w1)⟩ + ⟨v, T ∗(w2)⟩
= ⟨v, T ∗(w1) + T ∗(w2)⟩ .

So T ∗(w1 + w2) = T ∗(w1) + T ∗(w2). Further,

⟨T (v), λw⟩ = λ ⟨T (v), w⟩
= λ ⟨v, T ∗(w)⟩
= ⟨v, λT ∗(w)⟩ .

So T ∗(λw) = λT ∗(w).

2.5.4. Example. — Let T : R3 ! R2 be a linear map defined by

T (x1, x2, x3) = (x2 + 3x3, 2x1) ∀(x1, x2, x3) ∈ R3.

Let (y1, y2) ∈ R2, then

⟨T (x1, x2, x3), (y1, y2)⟩ = ⟨(x2 + 3x3, 2x1), (y1, y2)⟩
= x2y1 + 3x3y1 + 2x1y2

= ⟨(x1, x2, x3), (2y2, y1, 3y1)⟩ .

So we have T ∗ : R2 ! R3 defined by

T ∗(y1, y2) = (2y2, y1, 3y1) ∀(y1, y2) ∈ R2.
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2.5. Self-adjoint linear operators

2.5.5. Theorem (Properties of adjoint of a linear map). — Let T ∈ L(V,W ), then
1. (S + T )∗ = S∗ + T ∗ ∀S ∈ L(V,W ).

2. (λT )∗ = λT ∗ ∀λ ∈ F.

3. (T ∗)∗ = T.

4. (ST )∗ = T ∗S∗ ∀S ∈ L(W,U), where U is a finite dimensional F-inner product space.

5. I∗ = I, where I is the identity operator on V.

6. T invertible =⇒ T ∗ invertible and (T ∗)−1 = (T−1)∗.

Proof. Let v ∈ V and w ∈ W.

1. If S ∈ L(V,W ), then

⟨(S + T )(v), w⟩ = ⟨S(v), w⟩ + ⟨T (v), w⟩
= ⟨v, S ∗ (w)⟩ + ⟨v, T ∗ (w)⟩
= ⟨v, (S∗ + T ∗)(w)⟩ .

2. If λ ∈ F, then

⟨(λT )(v), w⟩ = λ ⟨T (v), w⟩ = λ ⟨v, T ∗(w)⟩ =
〈
v, λT ∗(w)

〉
.

3. We have
⟨T ∗(w), v⟩ = ⟨v, T ∗(w)⟩ = ⟨T (v), w⟩ = ⟨w, T (v)⟩

so (T ∗)∗(v) = T (v).

4. Let S ∈ L(W,U) and u ∈ U. Then

⟨(S ◦ T )(v), u⟩ = ⟨S(T (v)), u⟩ = ⟨T (v), S ∗ (u)⟩ = ⟨v, T ∗(S∗(u))⟩ .

5. Suppose u ∈ V then ⟨Iu, v⟩ = ⟨u, v⟩ , so I∗ = I.

6. Suppose T is invertible. Then T−1T = I. Taking adjoints on both sides,(
T−1T

)∗ = I∗

=⇒ T ∗(T−1)∗ = I

Similarly, we get (T−1)∗T ∗ = I from TT−1 = I. Thus, (T ∗)−1 = (T ∗)−1.

2.5.6. Remark. — Similarly we have adjoints for square matrices A,B ∈ Fn×n.

1. (A+B)∗ = A∗ +B∗.

2. (λA)∗ = λA∗.

3. (A∗)∗ = A.

4. (AB)∗ = B∗A∗.

5. I∗
n = I.

6. (A∗)−1 = (A−1)∗ ∀A ∈ GLn(F).
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2.5. Self-adjoint linear operators

2.5.7. Theorem. — Let T ∈ L(V,W ), then

1. ker(T ∗) = (im(T ))⊥
.

2. im(T ∗) = (ker(T ))⊥
.

3. ker(T ) = (im(T ∗))⊥
.

4. im(T ) = (ker(T ∗))⊥
.

Proof. Let w ∈ W. Then we begin by proving (1.)

w ∈ ker(T ∗) ⇐⇒ T ∗(w) = 0
⇐⇒ ⟨v, T ∗(w)⟩ = 0 ∀v ∈ V

⇐⇒ ⟨T (v), w⟩ = 0 ∀v ∈ V

⇐⇒ w ∈ (im(T ))⊥
.

Thus, ker(T ∗) = (im(T ))⊥
. Taking the orthogonal complement on both sides yields (4.),

using Theorem 2.4.10. As (T ∗)∗ = T, we get (3.) from (1.) by replacing T with T ∗. Finally,
we get (2.) from (4.) by replacing T with T ∗.

2.5.8. Theorem. — If T ∈ L(V,W ) then the following are equivalent

1. T is an inner product space isomorphism.

2. T is a vector space isomorphism and T−1 = T ∗.

3. TT ∗ = idW .

4. T ∗T = idV .

Proof. Let T be an inner product space isomorphism, then

⟨T (x), y⟩ =
〈
T (x), T (T−1(y))

〉
=

〈
x, T−1(y)

〉
= ⟨x, T ∗(y)⟩ .

So (1.) =⇒ (2.), and (2.) trivially implies (3.) and (4.).
Now, (4.) =⇒ (1.) as T ∗T = idV =⇒ T is injective =⇒ T is bijective.
Also, (2.) =⇒ (1.) as ⟨T (x), T (y)⟩ = ⟨x, T ∗(T (y))⟩ = ⟨x, y⟩ .

2.5.9. Definition (conjugate transpose). — Let A ∈ Fm×n. Then the conjugate trans-
pose of A is the n×m matrix A∗ ∈ Fn×m obtained by taking the complex conjugate of each
entry in the transpose of A,

(a∗)ij = (a)ji.

When F = R, A∗ = AT . When F = C, A∗ = (A)T .

2.5.10. Example. — Let A =
(

2 3 + 4i 7
6 5 8i

)
. Then A∗ =

 2 6
3 − 4i 5

7 −8i

 .
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2.5. Self-adjoint linear operators

2.5.11. Example. —

A =
(

1 2 3
4 5 6

)
, A∗ =

1 4
2 5
3 6

 .

2.5.12. Theorem. — Let V and W be two finite dimensional F-inner product spaces.
Suppose T ∈ L(V,W ), {e1, . . . , en} is an ordered orthonormal basis of V and {f1, . . . , fm} is
an ordered orthonormal basis of W. If m(T ) is the matrix representation of T w.r.t. these
bases, then the adjoint map T∗ ∈ L(W,V ) is represented by (m(T ))∗ w.r.t. the same bases.
In other words,

m(T ∗) = (m(T ))∗.

2.5.13. Definition (Self-adjoint). — Let V be a finite dimensional F-inner product space
and T ∈ L(V ) be a linear operator. Then T is self-adjoint if T = T ∗.

In other words, T is self-adjoint if

⟨T (v), w⟩ = ⟨v, T (w)⟩ ∀v, w ∈ V.

In matrix representation, m(T ) = (m(T ))∗.

2.5.14. Example. — Let λ ∈ F and T : F2 ! F2 be a linear operator defined by

T (x, y) = (2x+ λy, 3x+ 7y) ∀(x, y) ∈ F2.

Then T is self-adjoint iff

m(T ) =
(

2 λ
3 7

)
= (m(T ))∗.

But the adjoint is

m(T )∗ =
(

2 3
λ 7

)
,

so T is self-adjoint iff λ = 3.

In particular, a matrix A ∈ Fn×n is self-adjoint iff A = A∗.
We know that the eigenvalues of a real symmetric matrix are real. This can be generalised.

2.5.15. Theorem. — Every eigenvalue of a self-adjoint linear operator on a complex inner
product space is real.

Proof. Let V be a complex inner product space and λ an eigenvalue of T. As T is self-adjoint,

λ∥v∥2 = λ ⟨v, v⟩
= ⟨λv, v⟩
= ⟨T (v), v⟩
= ⟨v, T (v)⟩
= λ ⟨v, v⟩
= λ∥v∥2.

=⇒ λ∥v∥2 = λ∥v∥2

=⇒ λ = λ.

Hence, λ is real.
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2.5. Self-adjoint linear operators

2.5.16. Theorem. — Let V be a complex inner product space and T ∈ L(V ) be a linear
operator. Then T (v) is orthogonal to v for all v ∈ V iff T = 0, i.e.

⟨T (v), v⟩ = 0 ⇐⇒ T = 0.

Proof. If T = 0, then ⟨T (v), v⟩ = ⟨0, v⟩ = 0 holds trivially.
Suppose ⟨T (v), v⟩ = 0, and let x, y ∈ V. Then,

⟨T (x), y⟩ = ⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩
4

+ ⟨T (x+ iy), x+ iy⟩ − ⟨T (x− iy), x− iy⟩
4

=⇒ ⟨T (x), y⟩ = 0 ∀x, y ∈ V.

So, in particular, setting y = T (x), we get ⟨T (x), T (x)⟩ = 0 =⇒ T (x) = 0 ∀x ∈ V.

2.5.17. Remark. — The above result doesn’t hold in F = R. Consider for instance
T ∈ L(R2) defined by

T (x, y) = (−y, x) ∀(x, y) ∈ R2.

Then ⟨T (x, y), (x, y)⟩ = 0∀(x, y) ∈ R2 but T ̸= 0.

2.5.18. Theorem. — Let V be a complex inner product space and T ∈ L(V ) be a linear
operator. Then T is self-adjoint iff ⟨T (v), v⟩ ∈ R.

Proof. Let v ∈ V and T ∗ be the adjoint of T. Then,

⟨T ∗(v), v⟩ = ⟨v, T ∗(v)⟩
= ⟨v, T (v)⟩ .

T is self-adjoint, so

T − T ∗ = 0
⇐⇒ ⟨(T − T ∗)(v), v⟩ = 0
⇐⇒ ⟨T (v), v⟩ − ⟨T ∗(v), v⟩ = 0
⇐⇒ ⟨T (v), v⟩ − ⟨v, T (v)⟩ = 0
⇐⇒ ⟨T (v), v⟩ ∈ R.

2.5.19. Remark. — Again, the above result doesn’t hold in F = R. Consider for instance
T ∈ L(R2) defined by

T (x, y) = (2x− 3y, 3x+ 2y) ∀(x, y) ∈ R2.

Then m(T ) =
(

2 −3
3 2

)
which is not real symmetric, so not self-adjoint even though

⟨T (x, y), (x, y)⟩ = ⟨(2x− 3y, 3x+ 2y), (x, y)⟩ ∈ R.

2.5.20. Theorem. — Let V be an F-inner product space and T ∈ L(V ) be self-adjoint.
Then

⟨T (v), v⟩ = 0 ∀v ∈ V ⇐⇒ T = 0.
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2.6. Normal linear operators

Proof. If T = 0 then it is trivial.
Suppose ⟨T (v), v⟩ = 0. Then, as T is self-adjoint,

⟨T (x), y⟩ = ⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩
4 = 0.

In particular, set y = T (x), then ⟨T (x), T (x)⟩ = 0 =⇒ T = 0.

2.6. Normal linear operators
Let V be a finite-dimensional F-inner product space. Let T ∈ L(V ) be a linear operator.

2.6.1. Definition (Normal operator). — T is called a normal operator if T commutes
with its adjoint T ∗, i.e. TT ∗ = T ∗T.

Every self-adjoint operator is (trivially) a normal operator. The converse need not be
true.

2.6.2. Example. — 1. T ∈ L(F2) defined by T (x, y) = (2x− 3y, 3x+ 2y).

m(T ) =
(

2 −3
3 2

)
wrt standard ordered basis of F2.

Its adjoint is m(T )∗ =
(

2 3
−3 2

)
̸= m(T ), so it is not self-adjoint, but

m(T )m(T )∗ = m(T )∗m(T ) =
(

13 0
0 13

)
so it is normal.

2. Let A ∈ C2×2 : A =
(

2 i
1 2

)
. Then again A is not self-adjoint as

A∗ =
(

2 1
−i 2

)
̸= A

but it is normal as
AA∗ = A∗A =

(
5 2 + 2i

2 − 2i 5

)
.

2.6.3. Question. — Show that each of the matrices

A =
(

1 i
−i 1

)
and B =

(
0 i
i 0

)
is normal but neither A+B nor AB is normal.

2.6.4. Lemma. — Let T ∈ L(V ), then T is normal iff

∥T ∗(v)∥ = ∥T (v)∥ ∀v ∈ V.
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2.6. Normal linear operators

Proof.

TT ∗ = T ∗T

=⇒ ∥TT ∗ − T ∗T∥ = ∥0∥ = 0
=⇒ ⟨(TT ∗ − T ∗T )(v), v⟩ = 0 ∀v ∈ V

=⇒ ⟨(TT ∗)(v), v⟩ = ⟨(T ∗T )(v), v⟩
=⇒ ⟨T ∗(v), T ∗(v)⟩ = ⟨T (v), T (v)⟩
=⇒ ∥T (v)∥2 = ∥T ∗(v)∥2.

Hence, ∥T ∗(v)∥ = ∥T (v)∥ ∀v ∈ V.

2.6.5. Theorem. — Let P ∈ L(V ) be a projection operator2, then P is a normal operator
iff P is a self-adjoint operator.
Proof. Let P be normal, then PP ∗ = P ∗P. Thus, ∥P ∗(v)∥ = ∥P (v)∥ ∀v ∈ V.

So, P (v) = 0 ⇐⇒ P ∗(v) = 0 ∀v ∈ V. Let y = v − P (v).

=⇒ P (y) = P (v − P (v))
= P (v) − P 2(v)
= 0 ∵ P 2 = P

Then

0 = P ∗(y)
= P ∗(v − P (v))
= P ∗(v) − (P ∗P )(v)

P ∗(v) = (P ∗)(v).

So P ∗ = P ∗P. Then P = (P ∗)∗ = (P ∗P )∗ = P ∗(P ∗)∗ = P ∗P = P ∗.

2.6.6. Theorem. — Let T ∈ L(V ) be normal, then
1. ker(T ) = ker(T ∗).

2. im(T ) = im(T ∗).

3. V = ker(T ) ⊕ im(T ).

4. T − λI is normal for all λ ∈ F.

5. For all λ ∈ F, v ∈ V,
T (v) = λv ⇐⇒ T ∗(v) = λv.

Proof. For (1.) let v ∈ ker(T ),

⇐⇒ T (v) = 0
⇐⇒ ∥T (v)∥ = 0
⇐⇒ ∥T ∗(v)∥ = 0
⇐⇒ T ∗(v) = 0
⇐⇒ v ∈ ker(T ∗).

2i.e. an idempotent operator
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2.6. Normal linear operators

For (2.), im(T ) = (ker(T ∗))⊥ = (ker(T ))⊥ = im(T ∗).
For (3.),

V = ker(T ) ⊕ (ker(T ))⊥

= ker(T ) ⊕ im(T ∗)
= ker(T ) ⊕ im(T ).

For (4.), we need to show (T − λI)(T − λI)∗ = (T − λI)∗(T − λI).

(T − λI)(T − λI)∗

= (T − λI)(T ∗ − λI)
= (TT ∗ − λT ∗ − λT ∗ − |λ|2I)
= (T ∗ − λI)(T − λI)
= (T − λI)∗(T − λI).

Finally, (5.) is a direct consequence of (1.),

T (v) = λv ⇐⇒ (T − λI)v = 0
⇐⇒ v ∈ ker(T − λI)
⇐⇒ v ∈ ker(T − λI)∗

⇐⇒ v ∈ ker(T ∗ − λI)
⇐⇒ (T ∗ − λI)(v) = 0,

and hence T ∗(v) = λv.

2.6.7. Theorem. — Let T ∈ L(V ) be normal. Then the eigenvectors of T corresponding
to distinct eigenvalues are orthogonal.

2.6.8. Theorem. — Let V be a finite-dimensional complex inner product space. Then T ∈
L(V ) is normal iff there exist commuting self-adjoint operators3 A,B such that T = A+ iB.

2.6.9. Theorem. — Let V be a finite-dimensional F-inner product space. Then T ∈ L(V )
is normal iff there exist commuting operators A,B s.t. A is self-adjoint, B is skew4 and
T = A+B.

Proof. Let
A = 1

2(T + T ∗), B = 1
2(T − T ∗).

Then T = A+B. Further,

T ∗T − TT ∗ = (A+B)∗(A+B) − (A+B)(A+B)∗

= (A∗ +B∗)(A+B) − (A+B)(A∗ +B∗)
= (A−B)(A+B) − (A+B)(A−B)
= 2(AB −BA) = 0.

Hence, T is normal.
3this means A = A∗, B = B∗, AB = BA
4B∗ = −B

48



2.7. Spectral theorem

2.7. Spectral theorem
Invertible quadratic expressions. — Suppose b, c ∈ R : b2 < 4c. Let x ∈ R, then by
completing the square

x2 + bx+ c =
(
x+ b

2

)2
+

(
c− b2

4

)
> 0.

In particular, x2 + bx+ c is an invertible real number, a convoluted way of saying that it
is nonzero. Replacing the real number x with a self-adjoint linear operator yields the next
result.

2.7.1. Theorem. — Let V be a finite-dimensional F-inner product space. Let T ∈ L(V )
be self-adjoint. Let b, c ∈ R : b2 < 4c. Then T 2 + bT + cI is an invertible linear operator.

Proof. Let v ∈ V \ {0}. Then〈
(T 2 + bT + cI)(v), v

〉
=

〈
T 2(v), v

〉
+ b ⟨T (v), v⟩ + c ⟨v, v⟩

= ∥T (v)∥2 + b ⟨T (v), v⟩ + c∥v∥2

(by Cauchy-Schwarz, Theorem 2.1.20) ⩾ ∥T (v)∥2 − |b|∥T (v)∥∥v∥ + c∥v∥2

=
(

∥T (v)∥ − |b|∥v∥
2

)2
+

(
c− b2

4

)
∥v∥2

> 0.

As (T 2 + bT + cI)(v) ̸= 0 ∀v ̸= 0, ker(T 2 + bT + cI) = {0} which means T 2 + bT + cI is
injective, so T 2 + bT + cI is bijective as it is linear. Hence, T 2 + bT + cI is invertible.

2.7.2. Theorem. — Let T ∈ L(V ) be self-adjoint. Then the minimal polynomial mT (x)
of T is given by

mT (x) = (x− λ1)(x− λ2) · · · (x− λn) (2.7.1)

for some λ1, λ2, . . . , λn ∈ R.

2.7.3. Theorem (Real Spectral Theorem). — Let V be a finite-dimensional real inner
product space and T ∈ L(V ). Then the following are equivalent:

1. T is self-adjoint.

2. T has a diagonal matrix wrt some orthonormal basis of V.

3. V has an orthonormal basis consisting of eigenvectors of T.

2.7.4. Theorem (Complex Spectral Theorem). — Let V be a finite-dimensional complex
inner product space and T ∈ L(V ). Then the following are equivalent:

1. T is normal.

2. T has a diagonal matrix wrt some orthonormal basis of V.

3. V has an orthonormal basis consisting of eigenvectors of T.
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2.8. Positive linear operators
2.8.1. Definition (Positive and positive-definite). — Let V be a finite-dimensional F-inner
product space and T ∈ L(V ).

T is positive if T is self-adjoint and ⟨T (v), v⟩ ⩾ 0 ∀v ∈ V.
T is positive-definite if T is self-adjoint and ⟨T (v), v⟩ > 0 ∀v ∈ V.

2.8.2. Example. — 1. T ∈ L(F2) given by T (x, y) = (2x− y,−x+ y) with

m(T ) =
(

2 −1
−1 1

)
.

Then

⟨T (w, z), (w, z)⟩ = 2|w|2 − 2ℜ(wz) + |z|2 = |w − z|2 + |w|2 ⩾ 0∀(w, z) ∈ F2

so T is a positive operator.

2. If W is a subspace of V then the orthogonal projection PW is a positive operator.

3. If T ∈ L(V ) is self-adjoint and b, c ∈ R : b2 < 4c, then T 2 + bT + cI is a positive
operator.

4. Consider T ∈ L(R2) defined by

T (x, y) =
(
x cos θ + y sin θ, −x sin θ + y cos θ

)
.

For which values of θ is T positive ?
In this case we want for all v ∈ R2,

⟨T (v), v⟩ = ∥v∥∥Av∥ cos θ ⩾ 0

so θ ∈ [−π/2, π/2].

2.8.3. Definition (Square root). — An operator S is called a square root of an operator
T if S2 = T.

2.8.4. Example. — T ∈ L(F3) given by T (x, y, z) = (z, 0, 0) has a square root S ∈ L(F3)
defined by

S(x, y, z) = (y, z, 0).

This is because S2 = T.

2.8.5. Theorem (Characterisation of positive-definite operators). — Let T ∈ L(V ). Then
the following are equivalent:

1. T is positive-definite.

2. T is self-adjoint and all eigenvalues of T are strictly positive.

3. Wrt some orthonormal basis of V, the matrix of T is a diagonal matrix with only
(strictly) positive numbers on the (main) diagonal.

4. T has an invertible positve square root.
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2.8. Positive linear operators

5. T has an invertible self-adjoint square root.

6. T = S∗S for some invertible S ∈ L(V ).

Linear maps that preserve norms are sufficiently important to deserve a name.

2.8.6. Definition (Unitary operator or isometry). — T ∈ L(V ) is unitary if ∥T (v)∥ = ∥v∥.

2.8.7. Remark. — Although unitary operator and isometry are the same for operators on
finite-dimensional spaces, a unitary operator maps a space to itself whereas an isometry may
map into an altogether different space.

2.8.8. Example. —
m(T ) =

(
cos θ sin θ

− sin θ cos θ.

)
2.8.9. Theorem (Characterisation of unitary operators). — Let T ∈ L(V ) and {e1, . . . , en}
be an orthonormal basis of V. Then the following are equivalent:

1. T is unitary.

2. T ∗T = TT ∗ = I.

3. T is invertible with T−1 = T ∗.

4. ⟨T (x), T (y)⟩ = ⟨x, y⟩ ∀x, y ∈ V.

5. {T (e1), . . . , T (en)} is an orthonormal basis of V.

6. The rows of m(T ) wrt the basis {e1, . . . , en} form an orthonormal basis of Fn wrt the
Euclidean inner product.

7. T ∗ is unitary.

Analogies between complex numbers and linear operators. —

C L(V )
z = z T = T ∗

zz = zz = 1 TT ∗ = T ∗T = I

2.8.10. Theorem. — Let V be a finite-dimensional F-inner product space and let T ∈ L(V )
be unitary. If λ is an eigenvalue of T, then |λ| = 1.

Proof. ∥T (v)∥ = ∥v∥ and ∃ v ̸= 0 : T (v) = λv,

=⇒ ∥T (v)∥ = |λ|∥v∥
=⇒ ∥v∥ = |λ|∥v∥
=⇒ 1 = |λ| ∵ v ̸= 0.

So |λ| = 1.
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Chapter 3.

Determinant and generalised
inverses

3
3.1. Determinant as a multilinear function
Bilinear and multilinear forms. — The inner product is an example of what we call a
bilinear form - it is linear in 2 input parameters. Similarly, we can have k-linear or multilinear
forms which are linear in k input parameters. The determinant is one such example of a
multilinear form.
3.1.1. Definition (Determinant). — Let K be a field with the standard basis {e1, . . . , en}.
Then the determinant is a function det : Kn × · · · × Kn︸ ︷︷ ︸

n times

! K that is uniquely characterised

by the following 3 properties:
1. For λ ∈ K, x, y ∈ Kn, (multilinear, or n-linear)

det(v1, . . . , vi−1, x+ λy, vi+1, . . . , vn)
= det(v1, . . . , vi−1, x, vi+1, . . . , vn) + λ det(v1, . . . , vi−1, y, vi+1, . . . , vn).

2. det(v1, . . . , vn) = 0 if vi = vj for some 1 ⩽ i < j ⩽ n. (antisymmetric, or alternating)

3. det(e1, . . . , en) = 1. (identity)
3.1.2. Remark. — The above can be summarised in one sentence: the order n determinant
is the unique alternating n-form det ∈

∧n(Kn)∗ for which det(e1, . . . , en) = 1.
Also observe that from the alternating property we have

det(v1, . . . , vi, . . . , vj , . . . , vn) + det(v1, . . . , vj , . . . , vi, . . . , vn)
= det(2v1, . . . , vi + vj , . . . , vj + vi, . . . , 2vn)
= 0

so det(v1, . . . , vi, . . . , vj , . . . , vn) = − det(v1, . . . , vj , . . . , vi, . . . , vn).
This is why det is antisymmetric.

3.2. Singular value decomposition
3.2.1. Definition/Proposition (Singular value decomposition). — A singular value
decomposition (SVD) of a matrix A ∈ Km×n of rank r is a factorisation

A = ULV ∗

where L = diag(l1, . . . , lr), lr > 0 and U∗U = Ir = V ∗V.
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3.3. Generalised inverses

3.2.2. Corollary. — Let A ∈ Km×n with r = rank(A). Then A contains at least one r × r
nonsingular matrix B such that

A =
(
B C
D E

)
. (3.2.1)

3.3. Generalised inverses
Motivation. — Given two square matrices A,B with AB = BA = I and det(A) ̸= 0 the
inverse of A is B = A−1. A square matrix is invertible iff it is non-singular. Note here that
A and B are square matrices i.e. A,B ∈ Kn×n.

Is it possible to generalise the notion of an inverse to any A ∈ Km×n ? The inverse B of
a square matrix A satisfies ABA = A. So if A ∈ Km×n then we want some B ∈ Kn×m such
that ABA = A.

3.3.1. Definition (Generalised inverse). — Let A ∈ Km×n. If there exists a matrix
B ∈ Kn×m such that ABA = A then B is called a generalised inverse (or g-inverse) of A.

3.3.2. Theorem. — Let A ∈ Km×n and G be a g-inverse of A. Then AG and GA are
idempotent and

rank(AG) = rank(GA) = rank(A). (3.3.1)

Proof. AGA = A so (AG)2 = (AG)(AG) = (AGA)G = AG. Hence AG is idempotent.
Similarly, (GA)2 = (GA)(GA) = G(AGA) = GA. Hence GA is idempotent.

Now, rank(AB) ⩽ min (rank(A), rank(B)) . Thus,

rank(AG) ⩽ rank(A) = rank((AG)A) ⩽ rank(AG).

Similarly,
rank(GA) ⩽ rank(A) = rank(A(GA)) ⩽ rank(GA).

Hence rank(AG) = rank(GA) = rank(A).

3.3.3. Remark. — Every matrix over a field has a g-inverse. In general, the g-inverse of a
matrix is not unique. In fact, there are infinitely many g-inverses of a matrix A ∈ Km×n. But
if m = n and det(A) ̸= 0 then A has the unique g-inverse A−1 which is just the inverse of A.

3.3.4. Theorem. — If G1, G2 are two g-inverses of A ∈ Km×n then for any λ ∈ K

λG1 + (1 − λ)G2

is a g-inverse of A.

Proof. We are given AG1A = A = AG2A. Now for any λ ∈ K we have

A (λG1 + (1 − λ)G2)A
= λAG1A+ (1 − λ)AG2A

= λA+ (1 − λ)A
= A.

Hence A (λG1 + (1 − λ)G2)A = A so λG1 + (1 − λ)G2 is a g-inverse of A.
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3.3. Generalised inverses

Finding a g-inverse of a matrix. — Given a matrix A ∈ Km×n we want to find a
g-inverse of A.

First compute r = rank(A). We then get an r × r non-singular matrix B such that

A =
(
B C
D E

)
by SVD of A (using (3.2.1)). Then

G =
(
B−1 0

0 0

)
(3.3.2)

is a g-inverse of A.

3.3.5. Example. — 1. Let A =

1 7 1 4
1 2 0 1
0 5 1 3

 . We have rank(A) = 2, so B =

(
1 7
1 2

)
, then B−1 = 1

5

(
−2 7
1 −1

)
. So a g-inverse of A is G =


−2/5 7/5 0
1/5 −1/5 0
0 0 0
0 0 0

 .

2. Let A =

1 2 3
4 5 6
7 8 9

 . As det(A) = 0, inverse will not exist, but rank(A) = 2, so

we have B =
(

1 2
4 5

)
. Then B−1 = − 1

3

(
5 −2

−4 1

)
, so a g-inverse of A is G =−5/3 2/3 0

4/3 −1/3 0
0 0 0

 .

3.3.6. Question. — Does there exist a g-inverse of a singular matrix ?

The answer is yes; consider A =
(

1 2
3 6

)
. Then det(A) = 0.

A g-inverse of this A is then given by G =
(

1 0
0 0

)
.

3.3.7. Definition (Moore-Penrose pseudoinverse). — If A+ is a g-inverse of A ∈ Km×n

such that

1. A+AA+ = A+

2. (AA+)∗ = AA+

3. (A+A)∗ = A+A

then A+ is called the Moore-Penrose pseudoinverse of A.

3.3.8. Theorem. — Let A ∈ Kn×n. Then det(A) ̸= 0 ⇐⇒ A−1 is the unique g-inverse
and Moore-Penrose pseudoinverse of A.

Proof. We have trivially AA−1A = A so A−1 is a g-inverse. If G is a g-inverse of A then

AGA = A =⇒ A−1(AGA)A−1 = A−1(A)A−1 =⇒ G = A−1.

Hence, A−1 is the unique g-inverse of A.
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Chapter 4.

Exam review 4
4.1. Internal assessment
4.1.1. Question. — Define a linear functional. Give 3 distinct examples of linear functionals
on R[0,1].

Let V be an F-vector space and V ′ its dual space. Then show that the dual map of the
identity operator on V is the identity operator on V ′.

4.1.2. Question. — Let V be a finite dimensional F-vector space. Let T : V ! V be a
linear operator.

(a) Prove that T has at most 1 + dim(im(T )) distinct eigenvalues.

(b) Let the minimal polynomial of T be 2x5 − 3x4 + 5x3 − 6x2 + 7x− 6. Is T invertible ?
Justify.

(c) Suppose T 4 = T. Is T diagonalisable ? Justify.

Solutions. —

1. Let V be a vector space over a field F. A linear functional ϕ is a linear transformation
ϕ : V ! F, i.e. ϕ maps V into F. R[0,1] is the real vector space of all functions
f : [0, 1]! R. Three distinct examples of linear functionals on R[0,1] are

a) ϕ(f(x)) = f(0),
b) ϕ(f(x)) = f(1/2) and
c) ϕ(f(x)) = f(1)

for all x ∈ [0, 1], f ∈ R[0,1].

Let id : V ! V be the identity operator on V, i.e. id(x) = x ∀x ∈ V. Let id′ : V ′ ! V ′

be the dual mapping of the identity operator id . Then by definition

id′(ϕ(x)) = (ϕ ◦ id)(x) = ϕ(id(x)) = ϕ(x) ∀ϕ ∈ V ′, x ∈ V.

Hence, id′ is the identity operator on V ′.

2. (a) Let λ1, . . . , λm be the distinct nonzero eigenvalues of T. Let v1, . . . , vm be the
corresponding eigenvectors. Then {v1, . . . , vm} is linearly independent.
Now if v is an eigenvector corresponding to a nonzero eigenvalue λ then

T (v) = λv =⇒ T (v/λ) = v =⇒ v ∈ im(T ).

Hence, {v1, . . . , vm} ⊆ im(T ). Also the eigenvalue may not be nonzero. Thus,
m ⩽ 1 + dim(im(T )).
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4.1. Internal assessment

(b) A linear operator T is invertible iff its minimal polynomial mT (x) has nonzero
constant term, i.e. mT (0) ̸= 0. We have mT (0) = −6 ̸= 0 so T is invertible.

(c) We assume F is algebraically closed (say F = C). Then

T 4 = T =⇒ T 4 − T = T (T 3 − I) = 0.

So T satisfies

f(x) = x(x3 − 1) = x(x− 1)(x− ω)(x− ω2) = 0,

where ω is a primitive cube root of unity. Then mT (x) | f(x).
So either mT (x) = x, x(x− 1), x(x− 1)(x− ω) or x(x− 1)(x− ω)(x− ω2). In
every case, the minimal polynomial mT (x) splits as a product of linear terms.
Hence, T is diagonalisable.
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