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Abstract

This report provides an exposition of Selberg’s proof of the Prime Number
Theorem (PNT), π(x) ∼ x

log x
, or rather the equivalent statement ψ(x) ∼ x.

Selberg’s proof is remarkable due to it being the first proof of the PNT not
requiring any complex analytic techniques. The key is Selberg’s asymptotic
formula ψ(x) log x+

∑
n⩽x Λ(n)ψ

(
x
n

)
= 2x log x+O(x). A generalisation to

prime ideals in a number field, the Prime Ideal Theorem, is also discussed briefly.

1. Introduction
The Prime Number Theorem (PNT) is the pinnacle of classical analytic number theory, and
a fundamental result about the distribution of primes. The original proof of the PNT, due
to Hadamard and de la Valée Poussin, uses complex analytic techniques and properties of
Riemann’s ζ-function. It was not known whether an elementary proof was possible (Hardy
even thought it to be impossible), until Selberg’s proof [Sel49] in 1949; Erdős also published
a proof around the same time.

[Apo89, Chapter 4] sketches an outline of Selberg’s proof. My aim here is to fill in the
technical details and present a complete proof, following very closely the proof given in
[HW08]. I also briefly discuss a generalisation to prime ideals in a number field, the so-called
Prime Ideal Theorem.
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2. Preliminaries

2.1. Notation

I use the O(·), o(·) and ∼ notations. For functions f : R → C, g : R → [0,∞),
f(x) = O

(
g(x)

)
means |f | ⩽ Cg for some constant C , f(x) = o

(
g(x)

)
means |f/g| → 0

as x → ∞, and f(x) ∼ g(x) means |f/g| → 1 as x → ∞. The notation ⌊x⌋ refers to the
floor function, the largest integer n such that n ⩽ x. Note that I never use {x} to refer to
the fractional part of x.

Finally, I always use the letter p is to denote a prime, and N to denote the positive
integers starting from 1.

2.2. Basic Notions

The PNT is usually stated in terms of the prime counting function π(x),

Definition 2.1. The prime counting function π(x) : (0,∞) → C is given by

π(x) = # {p : p ⩽ x} .

Theorem 2.2 (Prime Number Theorem).

π(x) ∼ x

log x
.

This is the main result that we will prove, and for this we need a few more preliminary
definitions and results.

Definition 2.3. The Euler-Mascheroni constant is defined as

γ = lim
n→∞

(
1 +

1

2
+ · · ·+ 1

n
− log n

)
.

Definition 2.4. The Riemann ζ-function is defined by

ζ(s) =


∞∑
n=1

1

ns
, if s > 1

lim
x→∞

(∑
n⩽x

1

ns
− x1−s

1− s

)
, if 0 < s < 1.
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Definition 2.5. The von Mangoldt function Λ : N → C is given by

Λ(n) =

{
log(p), if n = pk, where k ⩾ 1 is an integer

0, otherwise.

Definition 2.6. The Chebyshev ϑ-function ϑ : (0,∞) → C is given by

ϑ(x) =
∑
p⩽x

log(p).

Definition 2.7. The Chebyshev ψ-function ψ : (0,∞) → C is given by

ψ(x) =
∑
n⩽x

Λ(n).

We will prove the PNT using Selberg’s method, by proving the equivalent PNT in
Chebyshev form.

Theorem 2.8 (PNT in Chebyshev form [Apo89, Theorem 4.4]). We have

π(x) ∼ x

log x
⇐⇒ ϑ(x) ∼ x ⇐⇒ ψ(x) ∼ x.

The following theorem due to Tatuzawa and Iseki [TI51] will be used to prove Selberg’s
asymptotic formula ((3.1)).

Theorem 2.9 ([Apo89, Theorem 4.17]). Let F : (0,∞) → C and G(x) = log x
∑
n⩽x

F
(
x
n

)
.

Then

F (x) log x+
∑
n⩽x

F
(x
n

)
Λ(n) =

∑
d⩽x

µ(d)G
(x
d

)
.

Proof. First write F (x) log x as a sum

F (x) log x =
∑
n⩽x

[
1

n

]
F
(x
n

)
log

x

n
=
∑
n⩽x

F
(x
n

)
log

x

n

∑
d|n

µ(d)

and using the identity Λ(n) =
∑
d|n
µ(d) log n

d
we can write

∑
n⩽x

F
(x
n

)
Λ(n) =

∑
n⩽x

F
(x
n

)∑
d|n

µ(d) log
n

d
.

Now adding these two equations we get

F (x) log x+
∑
n⩽x

F
(x
n

)
Λ(n) =

∑
n⩽x

F
(x
n

)∑
d|n

µ(d)
{
log

x

n
+ log

n

d

}
=
∑
n⩽x

F
(x
n

)∑
d|n

µ(d) log
x

d

=
∑
n⩽x

∑
d|n

F
(x
n

)
µ(d) log

x

d
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=
∑
q⩽x/d

∑
d⩽x

F

(
x

qd

)
µ(d) log

x

d
write n = qd

=
∑
d⩽x

µ(d) log
x

d

∑
q⩽x/d

F

(
x

qd

)
=
∑
d⩽x

µ(d)G
(x
d

)
.

The following technique called Abel summmation will be used several times.

Theorem 2.10 (Abel summmation [Apo89, Theorem 4.2]). For any arithmetic function
a : N → C let

A(x) =
∑
n⩽x

a(n),

where A(x) = 0 for all x < 1. Assume f has a continuous derivative on the interval [y, x],
where 0 < y < x.Then∑

y<n⩽x

a(n)f(n) = A(x)f(x)− A(y)f(y)−
∫ x

y

A(t)f ′(t)dt.

Proof. As A(x) is a step function with jump f(n) at each integer n, we can express the sum
on the left as a Riemann-Stieltjes integral∑

y⩽n⩽x

a(n)f(n) =

∫ x

y

f(t)dA(t).

Integrating by parts, we get∑
y⩽n⩽x

a(n)f(n) = f(x)A(x)− f(y)A(y)−
∫ x

y

A(t)df(t)

= f(x)A(x)− f(y)A(y)−
∫ x

y

A(t)f ′(t)dt.

In particular, for y < 1, we have
∑
n⩽x

a(n)f(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.
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The following estimates will also be useful.

Theorem 2.11 ([Apo89, Theorem 3.2(a)]). If x ⩾ 1, then∑
n⩽x

1

n
= log x+ γ +O

(
1

x

)
.

Theorem 2.12 ([Apo89, Theorem 3.2(b)]). If x ⩾ 1, s > 0 and s ̸= 1 then∑
n⩽x

1

ns
=

x1−s

1− s
+ ζ(s) + O(x−s).

Theorem 2.13 ([Apo89, Theorem 4.9]).∑
n⩽x

Λ(n)

n
= log x+O(1).

Theorem 2.14 ([Apo89, Theorem 4.11]). For all x ⩾ 1 we have∑
n⩽x

ψ
(x
n

)
= x log x− x+O(log x).

Theorem 2.15 ([HW08, Theorem 414]).

ψ(x) = O(x).

Proof. Using Theorem (2.14), and the fact that log x < x, we get

ψ(x)− ψ
(x
2

)
= x log x+O(x)− 2

(x
2
log

x

2
+ O(x)

)
= O(x).

So there exists a constant K > 0 such that

ψ(x)− ψ
(x
2

)
⩽ Kx ∀x ⩾ 1.

Replacing x successively by x/2, x/4, . . . we obtain

ψ
(x
2

)
− ψ

(x
4

)
⩽ K

x

2

ψ
(x
4

)
− ψ

(x
8

)
⩽ K

x

4

and so forth. Note that ψ(x/2n) = 0 when 2n > x. Adding these inequalities yields

ψ(x) ⩽ Kx

(
1 +

1

2
+

1

4
+ · · ·

)
= 2Kx.

Hence, ψ(x) ⩽ Bx with B = 2K, so ψ(x) = O(x).
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2.3. Outline of the argument

The key lemma is Selberg’s asymptotic formula

ψ(x) log x+
∑
n⩽x

Λ(n)ψ
(x
n

)
= 2x log x+O(x).

It is natural (it will become clear later why) to define a function

σ(x) = e−xψ(ex)− 1,

then Selberg’s formula implies the inequality

x2
∣∣σ(x)∣∣ ⩽ 2

∫ x

0

∫ y

0

∣∣σ(u)∣∣du dy +O(x). (2.1)

The PNT is then equivalent to the statement: σ(x) → 0 as x→ ∞. Hence, if we let

C = lim sup
x→∞

∣∣σ(x)∣∣, K = lim sup
x→∞

1

x

∫ x

0

∣∣σ(u)∣∣du
then the PNT is equivalent to showing that C = 0. This is proved as follows by assuming
towards a contradiction that C > 0. From the definition of C and K,∣∣σ(x)∣∣ ⩽ C + o(1),

∣∣σ(x)∣∣ ⩽ K + o(1) (2.2)

with C ⩽ K. If C > 0, then this inequality along with (2.1) yields K < C, which is absurd.
So C = 0.

3. Proof of the main result

3.1. Selberg’s asymptotic formula

The following asymptotic formula of Selberg is the key lemma in this proof

Theorem 3.1 (Selberg’s theorem). For x > 0 we have

ψ(x) log x+
∑
n⩽x

Λ(n)ψ
(x
n

)
= 2x log x+O(x)

and ∑
n⩽x

Λ(n) log n+
∑
mn⩽x

Λ(m)Λ(n) = 2x log x+O(x).

Proof. The two statements above are equivalent as∑
n⩽x

Λ(n)ψ
(x
n

)
=
∑
n⩽x

Λ(n)
∑
m⩽x/n

Λ(m) =
∑
mn⩽x

Λ(m)Λ(n)

and using Abel summmation with a(n) = Λ(n) and f(t) = log t we get∑
n⩽x

Λ(n) log n = ψ(x) log x−
∫ x

2

ψ(t)

t
dt = ψ(x) log x+O(x)
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using Theorem (2.15). Now, we apply Theorem (2.9) to the functions F1 = ψ(x) as well as
F2(x) = x− γ− 1, where γ is the Euler-Mascheroni constant. For F1, using Theorem (2.14),
we have

G1(x) = log x
∑
n⩽x

ψ
(x
n

)
= x log2 x− x log x+O(log2 x).

For F2, using Theorem (2.11) we have

G2(x) = log x
∑
n⩽x

(x
n
− γ − 1

)
= x log x

∑
n⩽x

1

n
− (γ + 1) log x

∑
n⩽x

1

= x log x

(
log x+ γ +O

(
1

x

))
− (γ + 1)

(
x+O(1)

)
log x

= x log2 x− x log x+O(log x).

Hence, G1(x)−G2(x) = O(log2 x). Only the weaker estimate G1(x)−G2(x) = O(
√
x) is

needed in fact. Now applying Theorem (2.9) to F1 and F2 yields

{F1(x)− F2(x)} log x+
∑
n⩽x

{
F1

(x
n

)
− F2

(x
n

)}
Λ(n)

=
∑
d⩽x

µ(d)
{
G1

(x
d

)
−G2

(x
d

)}
= O

(∑
d⩽x

√
x

d

)
.

Then applying Theorem (2.12) to the above yields

{ψ(x)− (x− γ − 1)} log x+
∑
n⩽x

{
ψ
(x
n

)
−
(x
n
− γ − 1

)}
Λ(n) = O

(
√
x
∑
d⩽x

1√
d

)
= O(x).

Hence, using Theorem (2.13), we get

ψ(x) log x+
∑
n⩽x

Λ(n)ψ
(x
n

)
= (x− γ − 1) log x+

∑
n⩽x

(x
n
− γ − 1

)
Λ(n) + O(x)

= x log x+ x
∑
n⩽x

Λ(n)

n
− (γ + 1)

{
log x+

∑
n⩽x

Λ(n)

}
+O(x)

= 2x log x+O(1)− 2(γ + 1) log x+O(x)

= 2x log x+O(x)

where the last step is due to the fact that log x < x.
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3.2. Proof of the PNT in Chebyshev form

We now prove the PNT in Chebyshev form (Theorem (2.8)). Set ψ(x) = x+R(x); the
aim is to show that R(x) = o(x). From Theorem (3.1) we get

x log x+R(x) log x+
∑
n⩽x

Λ(n)
(x
n

)
+
∑
n⩽x

Λ(n)R
(x
n

)
= 2x log x+O(x).

Then using Theorem (2.13) we get

R(x) log x+
∑
n⩽x

Λ(n)R
(x
n

)
= O(x).

Replacing n by m, x by x/n

R
(x
n

)
log
(x
n

)
+
∑
m⩽x/n

Λ(m)R
( x

mn

)
= O

(x
n

)
.

Hence, using Theorem (2.13) again

log x

{
R(x) log x+

∑
n⩽x

Λ(n)R
(x
n

)}

−
∑
n⩽x

Λ(n)

R(xn) log (xn)+ ∑
m⩽x/n

Λ(m)R
( x

mn

)
= O(x log x) + O

(
x
∑
n⩽x

Λ(n)

n

)
= O(x log x).

Distributing the first and second terms, and using log(x/n) = log x− log n

R(x) log2 x =−
∑
n⩽x

Λ(n)R
(x
n

)
log n

+
∑
mn⩽x

Λ(m)Λ(n)R
( x

mn

)
+O(x log x)

=−
∑
n⩽x

Λ(n)R
(x
n

)
log n

+
∑
n⩽x

∑
hk=n

Λ(h)Λ(k)R
( x
hk

)
+O(x log x)

=⇒ |R(x)| log2 x ⩽
∑
n⩽x

Λ(n)
∣∣∣R(x

n

)∣∣∣ log n
+
∑
n⩽x

∑
hk=n

Λ(h)Λ(k)
∣∣∣R( x

hk

)∣∣∣+O(x log x)

⩽
∑
n⩽x

{
Λ(n) log n+

∑
hk=n

Λ(h)Λ(k)

}∣∣∣R(x
n

)∣∣∣+O(x log x)
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from where, noting that
∑
mn⩽x

Λ(m)Λ(n)R
∣∣( x
mn

)∣∣ = ∑
ℓ⩽x

Λ(m)Λ
(
ℓ
m

)
R
∣∣(x

ℓ

)∣∣, we get

|R(x)| log2 x ⩽
∑
n⩽x

an

∣∣∣R(x
n

)∣∣∣+O(x log x) (3.1)

where an = Λ(n) log n+
∑
hk=n

Λ(h)Λ(k) and
∑
n⩽x

an = 2x log x+O(x). Now we replace the

sum with an integral.

Lemma 3.2.

|R(x)| log2 x ⩽ 2

∫ x

1

∣∣∣R(x
t

)∣∣∣ log tdt+O(x log x). (3.2)

Proof. If t > t′ ⩾ 0, and F (t) := ψ(t) + t = O(t) be an increasing function, then

||R(t)| − |R(t′)|| ⩽ |R(t)−R(t′)| = |ψ(t)− ψ(t′)− (t− t′)|
⩽ ψ(t)− ψ(t′) + t− t′ = F (t)− F (t′)

=⇒
∑
n⩽x−1

n

{
F
(x
n

)
− F

(
x

n+ 1

)}
=
∑
n⩽x

F
(x
n

)
− [x]F

(
x

[x]

)

= O

(
x
∑
n⩽x

1

n

)
= O(x log x).

Let c(1) = 0, c(n) = an − 2
∫ n
n−1

log tdt, f(n) =
∣∣R(x

n
)
∣∣ , C(x) = ∑

n⩽x
c(n),

then C(x) =
∑
n⩽x

an − 2
∫ [x]

1
log tdt = O(x) and using∑

n⩽x

c(n)f(n) =
∑
n⩽x−1

C(n) {f(n)− f(n+ 1)}+ C(x)f ([x])

we have∑
n⩽x

an

∣∣∣R(x
n

)∣∣∣− 2
∑

2⩽n⩽x

∣∣∣R(x
n

)∣∣∣ ∫ n

n−1

log tdt

=
∑
n⩽x−1

C(n)

{∣∣∣R(x
n

)∣∣∣− ∣∣∣∣R( x

n+ 1

)∣∣∣∣}+ C(x)

∣∣∣∣R( x

[x]

)∣∣∣∣
= O

( ∑
n⩽x−1

n

{
F
(x
n

)
− F

(
x

n+ 1

)})
+O(x)

= O(x log x). (3.3)

Now∣∣∣∣∣∣∣R(xn)∣∣∣
∫ n

n−1

log tdt−
∫ n

n−1

∣∣∣R(x
t

)∣∣∣ log tdt∣∣∣∣ ⩽ ∫ n

n−1

∣∣∣∣∣∣R(x
n

)∣∣∣− ∣∣∣R(x
t

)∣∣∣∣∣∣ log tdt
⩽
∫ n

n−1

{
F
(x
t

)
− F

(x
n

)}
log tdt ⩽ (n− 1)

{
F

(
x

n− 1

)
− F

(x
n

)}
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so that∑
2⩽n⩽x

∣∣∣R(x
n

)∣∣∣ ∫ n

n−1

log tdt−
∫ x

1

∣∣∣R(x
t

)∣∣∣ log tdt
= O

( ∑
n⩽x−1

n

{
F
(x
n

)
− F

(
x

n+ 1

)})
+O(x log x)

= O(x log x). (3.4)

Adding the equations (3.3) and 2×(3.4) yields (3.2).

Hence, we can rewrite (3.1) as

log2(z) |R(z)| ⩽ 2

∫ z

1

∣∣∣R(z
t

)∣∣∣ log tdt+O(z log z). (3.5)

ShowingR(x) = o(x) directly using (3.5) is hard because the behaviour of the von Mangoldt
function Λ(n) depends on the location of primes which is exactly what we’re trying to
find. Hence it is natural to define a smoother function σ(x) = e−xR(ex) = e−xψ(ex)− 1.
Substitute z = ex, t = ze−u =⇒ dt = −ze−udu. Then for the integral’s limits in (3.5),
t = z when u = 0 and t = 1 when u = x. Also |R(z/t)| = |R(eu)| = eu|σ(u)| and
log t = x− u. So the integral becomes simplified as∫ z

1

∣∣∣R(z
t

)∣∣∣ log tdt = −z
∫ 0

x

eu|σ(u)|(x− u)e−udu

= z

∫ x

0

|σ(u)|(x− u)du = ex
∫ x

0

|σ(u)|
∫ x

u

dydu

(change the order of integration) = ex
∫ x

0

∫ y

0

|σ(u)|dudy.

Hence we may rewrite (3.5) as the simpler

x2|σ(x)| ⩽ 2

∫ x

0

∫ y

0

|σ(u)|dudy +O(x). (3.6)

As ψ(x) = O(x) by Theorem (2.15), by definition σ(x) is bounded for large x. So the upper
limits

C = lim sup
x→∞

|σ(x)| and K = lim sup
x→∞

1

x

∫ x

0

|σ(u)|du (3.7)

exist. Then

σ(x) ⩽ C + o(1) and
∫ x

0

|σ(u)|du ⩽ Kx+ o(x) (3.8)

so using (3.6) we get

σ(x) ⩽ K + o(1). (3.9)

Hence C ⩽ K. Now R(x) = o(x) ⇐⇒ σ(x) = o(1) so our aim is to show C = 0. So we
assume for contradiction that C > 0, then show that K < C which is absurd.
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We need the following two lemmas.

Lemma 3.3. There is a fixed A1 > 0 such that for all x1, x2 > 0 we have
∣∣∣∫ x2x1 σ(u)du∣∣∣ < A1.

Proof. From Theorem (2.13), and using Abel summmation with a(n) = Λ(n), f(t) = 1
t

we
get the estimate

∫ z
2
ψ(t)
t2

dt = log z +O(1). Substituting z = ex, t = eu then yields∫ x

0

σ(u)du =

∫ x

0

{
e−uψ(eu)− 1

}
du =

∫ z

1

{
ψ(t)

t2
− 1

t

}
dt = O(1).

To prove the lemma it suffices to show that the integral is O(1), so we note that∫ x2

x1

σ(u)du =

∫ x2

0

−
∫ x1

0

σ(u)du = O(1).

Lemma 3.4. If σ(u0) = 0 for some u0 > 0 then
∫ C
0
|σ(u0 + t)| dt ⩽ C2

2
+O(u−1

0 ).

Proof. We rewrite Selberg’s formula (Theorem (3.1)) as

ψ(x) log x+
∑
mn⩽x

Λ(m)Λ(n) = 2x log x+O(x).

If x > x0 ⩾ 1, the same holds for x0 in place of x. Subtracting the two yields

ψ(x) log x− ψ(x0) log x0 +
∑

x0<mn⩽x

Λ(m)Λ(n) = 2 (x log x− x0 log x0) + O(x).

Since Λ(n) ⩾ 0, we have 0 ⩽ ψ(x) log x − ψ(x0) log x0 ⩽ 2 (x log x− x0 log x0) + O(x).
This implies |R(x) log x−R(x0) log x0| ⩽ x log x−x0 log x0+O(x). Put x = eu0+t, x0 = u0
so that R(x0) = 0. Then for 0 ⩽ t ⩽ C, we have

|σ(u0 + t)| ⩽ 1−
(

u0
u0 + t

)
e−t +O

(
1

u0

)
= 1− e−t +O

(
1

u0

)
⩽ t+O

(
1

u0

)
.

Hence,
∫ C

0

|σ(u0 + t)|dt ⩽
∫ C

0

tdt+O(u−1
0 ) =

C2

2
+ O(u−1

0 ).

Now let δ =
3C2 + 4A1

2C
> C > 0 and let y > 0 be arbitrary. We study the behaviour

of σ(u) on the interval [y, y + δ − C]. By its definition, σ(u) = e−uψ(eu)− 1 is monotone
increasing only at the jump discontinuities u = log pk where it increases by log p and
between any two jump discontinuities σ(u) decreases monotonically as ψ(eu) remains
constant whilst e−u decreases. This means that either σ(u) vanishes at some point u = u0
or σ(u) changes sign at most once.

Case I: As σ(u0) = 0 for some u0 ∈ [y, y + δ − C], we use (3.8) and Lemma (3.4) to
obtain ∫ y+δ

y

|σ(u)|du =

∫ u0

y

+

∫ u0+C

u0

+

∫ y+δ

u0+C

|σ(u)|du

11



⩽ C(u0 − y) +
C2

2
+ C

(
y + δ − u0 − C

)
+ o(1)

= C

(
δ − C

2

)
= o(1) = C ′δ + o(1)

for all y sufficiently large, where we took C ′ = C

(
1− C

2δ

)
< C.

Case II: If σ(u) changes sign exactly once at some point u = u1 ∈ [y, y + δ − C], then
by Lemma (3.3)∫ y+δ−C

y

|σ(u)|du =

∣∣∣∣∫ u1

y

σ(u)du

∣∣∣∣+ ∣∣∣∣∫ y+δ−C

u1

σ(u)du

∣∣∣∣ < 2A1.

If σ(u) does not change sign at all in the interval, then by Lemma (3.3) again∫ y+δ−C

y

|σ(u)|du =

∣∣∣∣∫ y+δ−C

y

σ(u)du

∣∣∣∣ < A1 < 2A1.

Hence, ∫ y+δ

y

|σ(u)|du =

∫ y+δ−C

y

+

∫ y+δ

y+δ−C
|σ(u)|du

< 2A1 +

∫ y+δ

y+δ−C
|C + o(1)|du

= 2A1 + C2 + o(1) = C ′′δ + o(1)

where we took C ′′ =
2A1 + C2

δ
= C

(
4A1 + 2C2

4A1 + 3C2

)
= C

(
1− C

2δ

)
= C ′.

In both cases we always have∫ y+δ

y

|σ(u)|du ⩽ C ′δ + o(1).

If M = [x/δ], then∫ x

0

|σ(u)|du =
M−1∑
m=0

∫ (m+1)δ

mδ

|σ(u)|du+
∫ x

Mδ

|σ(u)|du

⩽ C ′Mδ + o(M) + O(1) = C ′x+ o(x).

Hence,

K = lim sup
x→∞

1

x

∫ x

0

|σ(u)|du ⩽ C ′ < C.

An absurdity. Hence, we must have C = 0. This proves the PNT in Chebyshev form.
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4. Further Generalisations
It is possible to generalise Theorem (2.2) to prime ideals in a number field. LetK be a number
field and πK(X) denote the number of prime ideals in K of norm at most X,

πK(X) = #{p : NK(p) ⩽ X}.

In 1903, Landau [Lan03] proved the following with an asymptotic analogous to the PNT

Theorem 4.1 (Prime Ideal Theorem).

πK(X) ∼ X

logX
.

Landau’s original proof involves complex analysis and properties of the Riemann ζ-
function, but an elementary proof in the spirit of Selberg’s proof of the PNT is also possible
as shown by Shapiro [Sha49] in 1949.
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